

M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# Two Year Degree Program in Microbiology (Faculty of Science &Technology)

Syllabus for M.Sc. (Microbiology) Part-II

# **Choice Based Credit System Syllabus**

To be implemented from Academic Year 2022-2023

## Title of the Course:

## M.Sc. (Microbiology) Preamble:

The main theme of teaching Microbiology courses is the application of basic principles of life sciences related to upcoming technology. Modern biology combines the principles of chemistry and biological sciences (Molecular biology, Clinical Microbiology, Immunology, Nanobiotechnology) with technological disciplines (engineering, computer science). The objective of the Master's Programme in Microbiology is to equip the students with updated knowledge of Pharmaceuticals like drug designing and drug development, molecular biology and Microbial technology.

The Board of Studies in Microbiology has identified the following thrust areas and prospective plans for syllabi reforms at postgraduate level:

- **Immunology:** It includes recent BRM therapy, tumor and its microenvironment and also immunological tolerance.
- **Clinical Microbiology**: It includes understanding various bacterial, viral, fungal and protozoal diseases with respect to causative agents, general characters, detection methods and prophylaxis.
- **Nanobiotechnology:** It provides a multitude of new tools for applications in various industries.
- **Pharmaceutical Microbiology**: It provides recent advancements in drug discovery and drug development.
- **Microbial Technology**: It provides the knowledge of the latest strategies in fermentation.
- **Research Methodology**: It includes use of search engines for scientific data mining, use of reference management tools, statistical data analysis using software.

To enrich students' knowledge and train them in the above-mentioned areas; we feel certain topics in the present syllabus need to be supplemented and strengthened by inclusion of a few additional topics. Areas that need to be introduced in syllabi have been identified as:

- Immunology
- Clinical Microbiology

MSc Microbiology

- > Advanced Molecular Biology Techniques
- Pharmaceutical Microbiology
- Microbial Technology
- Techniques in Bionanotechnology

In addition, we feel that the students should be well acquainted with research methodology which includes different skill developments in scientific writing, data handling and processing, development of research ideas and planning / designing of research projects. The skill sets thus evolved will help the students in overall research. This syllabus aims to give the student a significant level of theoretical and practical understanding of the subject.

#### **Introduction:**

With the changing scenario, we feel that the syllabus orientation should be altered to keep pace with developments in the education sector. The need of the hour is proper syllabi that would emphasize on teaching of latest technological aspects as well as its applications in various sectors. Theory supplemented with laboratory expertise and hands-on training will help students to get better job opportunities. Both these aspects i.e theory as well as practical needs to be considered, such that a postgraduate student can start working directly in different industries or institutions, without any additional training.

Thus, the college itself would try to develop trained and skilled manpower. We have restructured the syllabus from this viewpoint. The restructured syllabus will combine the principles of chemistry and biological sciences (molecular and cell biology, genetics, immunology, clinical Microbiology) with technological disciplines to produce goods and services and for wastewater treatment and management.

Microbiology curricula are operated at two levels viz. undergraduate and postgraduate. The undergraduate curricula are prepared to impart basic knowledge of the respective subject from all possible aspects. In addition, students are to be trained to apply this knowledge particularly in day- to-day applications of Microbiology and to get a glimpse of research.

## **Objectives to be achieved:**

- To enrich students' knowledge and train them in life sciences
- To introduce the concepts of Nanobiotechnology
- To inculcate research aptitude
- To inculcate a sense of scientific responsibilities
- To help students build-up a progressive and successful career in Microbiology

# PROGRAM SPECIFIC OUTCOME

The objectives of PG Microbiology are to get students familiarized to versatile tools and techniques employed in Molecular Biology and nanobiotechnology. They are introduced to the concepts of Clinical Biology. The objective is also to inculcate research aptitude and carry out academic and applied research. They will gain an insight on Clinical Microbiology, Pharmaceutical Microbiology; Molecular biology, Microbial Virus Technology, Advances in Microbial Technology, Industrial waste water treatment and industrial production of vaccines.

## **Evaluation Pattern:**

For each Theory and Practical Course, 50-50 pattern will be followed.

Internal assessment will be of 50 marks for a paper of 100 Marks.

Internal assessment will be of 25 marks for a paper of 50 Marks.

For Continuous Internal Evaluation (CIE), evaluation of theory courses will be done continuously.

The 50 marks of Internal Evaluation shall be divided into the following:

- a) One Mid-Semester Exams of 15 Marks each
- b) Two Class Tests of 15 marks each converted to 15 Marks
- c) One Presentation/Seminar/MCQ Test of 5 Marks
- d) One Group Discussion/Open Book Test of 5 or 10 Marks
- e) Class Assignments of 5 or 10 Marks
- f) A compulsory Mock Practical Examination and Viva Voce of practical subjects
- g) Internal marks for Journal / project report/ dissertation report completion and certification

| Course                                   | Course Code | Course                                                                                                             | Credits | A  | ssessn | nent  |
|------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|---------|----|--------|-------|
| Туре                                     | Name        | Name                                                                                                               |         | IA | UE     | Total |
| Core<br>Compulsory                       | 21SMMB231   | Immunology and Clinical<br>Microbiology                                                                            | 4       | 50 | 50     | 100   |
| Theory                                   | 21SMMB232   | Molecular Biology II                                                                                               | 4       | 50 | 50     | 100   |
| Papers                                   | 21SMMB233   | Nanobiotechnology and its applications                                                                             | 4       | 50 | 50     | 100   |
| Choice Based<br>Optional                 | 21SMMB234A  | Cell Culture Techniques                                                                                            | 2       | 25 | 25     | 50    |
| Papers<br>Elective/<br>Departmental      | 21SMMB236A  | Practicals based on Cell<br>Culture Techniques                                                                     | 2       | 25 | 25     | 50    |
| Course                                   |             | OR                                                                                                                 | 1 1     |    |        | 1     |
|                                          | 21SMMB234B  | Bioremediation and Biomass<br>utilization                                                                          | 2       | 25 | 25     | 50    |
|                                          | 21SMMB236B  | Practicals based on<br>Bioremediation and Biomass<br>utilization                                                   | 2       | 25 | 25     | 50    |
|                                          |             | OR                                                                                                                 |         |    |        |       |
|                                          | 21SMMB234C  | Microbial Virus Technology                                                                                         | 2       | 25 | 25     | 50    |
|                                          | 21SMMB236C  | Practicals based on Microbial<br>Virus Technology                                                                  | 2       | 25 | 25     | 50    |
| Core<br>Compulsory<br>Practical<br>paper | 21SMMB235   | Immunology,ClinicalMicrobiology,MolecularBiologyandAppliedNanotechnology(Practicalsbasedoncompulsorytheorycredits) | 4       | 50 | 50     | 100   |

| Course                                | Course Code | Course Name                                                                                                          | Credit | Asses | sment |       |
|---------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|
| Туре                                  |             |                                                                                                                      | S      | IA    | UE    | Total |
| Core                                  | 21SMMB241   | Pharmaceutical Microbiology                                                                                          | 4      | 50    | 50    | 100   |
| Compulsory<br>Theory<br>Papers        | 21SMMB242   | Microbial Technology                                                                                                 | 4      | 50    | 50    | 100   |
| Choice<br>Based<br>Optional<br>Papers | 21SMMB243A  | Quality assurance and<br>validation in Pharmaceutical<br>industry and development of<br>Anti- infectives from plants |        | 25    | 25    | 50    |
| Elective/<br>Departmental<br>Course   | 21SMMB245A  | PracticalsbasedonqualityassuranceandvalidationinPharmaceuticalindustryand development of Anti-infectives from plants | 2      | 25    | 25    | 50    |
|                                       | OR          |                                                                                                                      |        |       |       |       |
|                                       | 21SMMB243B  | Advances in Microbial<br>Technology                                                                                  | 2      | 25    | 25    | 50    |
|                                       | 21SMMB245B  | Practicals based on<br>Advances in Microbial<br>Technology                                                           | 2      | 25    | 25    | 50    |
|                                       |             | OR                                                                                                                   |        | L     |       |       |
|                                       | 21SMMB243C  | Industrial waste water<br>treatment and<br>Industrial production<br>of vaccines                                      | 2      | 25    | 25    | 50    |
|                                       | 21SMMB245C  | Practicals based on<br>Industrial waste water                                                                        | Z      | 25    | 25    | 50    |

|            |            | treatment and Industrial                             |   |    |    |     |
|------------|------------|------------------------------------------------------|---|----|----|-----|
|            |            | production of vaccines                               |   |    |    |     |
|            |            | OR                                                   |   |    |    |     |
|            | 21SMMB243D | Bioethics, Biosafety, Quality<br>Control and Quality | 2 | 25 | 25 | 50  |
|            |            | Assurance                                            |   |    |    |     |
|            | 21SMMB245D | Practicals based on Bioethics, Biosafety, Quality    | 2 | 25 | 25 | 50  |
|            |            | Control and Quality<br>Assurance                     |   |    |    |     |
| Core       |            | Dissertation                                         |   |    |    |     |
| Compulsory | 21SMMB244  |                                                      | 4 | 50 | 50 | 100 |
| Practical  |            |                                                      |   |    |    |     |
| paper      |            |                                                      |   |    |    |     |



## M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1

(Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# MSc II Syllabus Semester III (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | 21SMMB231                            |
|---------------------|--------------------------------------|
| Course Code         | Immunology and Clinical Microbiology |
| Semester            | III                                  |
| No. of Credits      | 4                                    |

Aims & Objectives of the Course

| Sr. No. | Objectives                                                                                                             |
|---------|------------------------------------------------------------------------------------------------------------------------|
| 1.      | To enrich students' knowledge related to basic concepts                                                                |
|         | of Immunology                                                                                                          |
| 2.      | To give the students' knowledge about host immune response                                                             |
| 3.      | To make students acquainted with the cell surface receptors present on various cells for signal transduction pathways. |

| Sr. | Learning Outcome                                                                         |
|-----|------------------------------------------------------------------------------------------|
| No. |                                                                                          |
| 1.  | Students will understand the concepts of Immunology                                      |
| 2.  | Students will be able to study the different effector mechanisms of host immune response |
| 3.  | Students will understand the concepts of signal transduction pathways.                   |

# 21SMMB231: Immunology and Clinical Microbiology

# **Core Compulsory Theory Paper**

## **Total: 4 Credits**

#### Workload: 15hrs /credit

| Credit | Credit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Workload |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Ι      | Cell surface molecules and receptors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       |
|        | <ul> <li>A. Definition, General structure and mechanism (dimerization and rotation), components of signal transduction (extracellular signaling molecule, receptor proteins, intracellular signaling proteins and target proteins)</li> <li>B. Adhesion molecules in immune activation, structure and function of B Cell Receptor, TCR-CD3 complex, Toll-like receptors, Cytokine receptors, G-protein coupled receptors</li> <li>C. Signal transduction pathways: IL-2 pathways (LAK/STAT, Dec/MAD Kinger, Dethemore)</li> </ul>                                                                                                                             |          |
| II     | (JAK/STAT, Ras/MAP Kinase Pathways) Regulation of Immune response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15       |
|        | <ul> <li>A. Negative regulation - Immunological tolerance,<br/>Mechanisms of tolerance induction (related<br/>experimentation using transgenic animals), T cell<br/>mediated suppression of immune response</li> <li>B. Regulation of immune responses by antigen,<br/>antigen-antibody complexes, Network theory and its<br/>experimental evidence</li> <li>C. Cytokines involved in haematopoiesis, Cytokine<br/>mediated cross regulation of TH subsets (TH1-TH2)</li> <li>D. Regulation of complement system – Classical and<br/>alternative pathway</li> <li>E. Biological Response Modifiers for cancer therapy<br/>and autoimmune disorders</li> </ul> |          |

| III | Determinants of Microbial Pathogenicity                             | 15 |
|-----|---------------------------------------------------------------------|----|
|     | A. Adhesion                                                         |    |
|     | B. Invasion                                                         |    |
|     | C. Evasion                                                          |    |
|     | <b>D.</b> Toxigenesis (Mode of action –In vivo and In vitro assay   |    |
|     | systems for diphtheria, cholera, tetanus toxoid and                 |    |
|     | endotoxins of Gram-negative bacteria)                               |    |
|     | <b>E.</b> Molecular basis of bacterial pathogenicity – Cytoskeletal |    |
|     | modulation of host cell. Virulence genes and                        |    |
|     | pathogenicity islands                                               |    |
| IV  | Bacterial/Viral/Protozoal/fungal/algal diseases with respect        | 15 |
|     | to causative agents, general characters, detection methods,         |    |
|     | therapeutic agents and prophylaxis                                  |    |
|     | A. Bacterial infections: Helicobacter pylori,                       |    |
|     | Actinomycetes bovis/israelli                                        |    |
|     | B. Viral infections: Hepatitis B, Oncoviruses                       |    |
|     | C. Protozoal infections: Ascaris lumbricoides, Giardia              |    |
|     | lamblia                                                             |    |
|     | <b>D. Fungal infections:</b> Candidiasis and Aspergillosis.         |    |
|     | E. Algal infections: Dinoflagellate, Noctiluca scintillans,         |    |
|     | Fibrocapsa japonica                                                 |    |

## **References:**

- 1. Austyn J. M. and Wood K. J. (1993) Principles of Molecular and Cellular Immunology. First edition Oxford University Press, New York.
- 2. Barret J. T. (1983) Text Book of Immunology. Fourth edition. Saint Louis, Mosby, London.
- 3. Boyd W. C. (1966) Fundamentals of Immunology, Interscience Publishers, New York.
- 4.Gangal S. and Sontakke S. (2013) Textbook of Basic and Clinical Immunology. University Press, India.
- 5. Garcia K. C. and Adams E. J. (2005) How the T cell Receptor Sees Antigen A Structural View. Cell. 122(3): 333–336.

6. Hafler D. A. (2007) Cytokines and interventional immunology, Nature Reviews, Immunology. 7(6): 423-423.

7. Kindt T. J., Osborne B. A. and Goldsby R. A. (2006) Kuby Immunology, Sixth edition, W. H. Freeman & amp; Co.

8. Yoshimura A., Naka T. and Kubo M. (2007). SOCS proteins, cytokine signaling and immune regulation. Nature Reviews, Immunology, 7(6): 454-465.

9. Abbas A. K. and Lichtman A. H. (2004) Basic Immunology. Functions and Disorders of Immune System. Second edition. Elsevier Inc.

10. Carroll M. C. (2004) The complement system in regulation of adaptive immunity. Nature Immunology. 5(10): 981-986.

11.Patwardhan B., Gautam M. and Diwanay S. (2006) Botanical Immunomodulators and Chemoprotectants in Cancer Therapy. In Drug discovery and development Volume I: Drug Discovery. Ed. Chorghade Mukund S. Wiley- Interscience, John Wiley and Sons Inc. USA. 405-424.

12. Roitt I. M. (1984) Essentials of Immunology. P. G. Publishers Pvt. Ltd., New Delhi.

13. Roitt I. M. 1988. Essentials of Immunology. ELBS, London.

14.Gal-Mor B. and Finlay B. B. (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cellular Microbiology. 8 (11): 1707-1719.

15. Iglewski B. H. (1990) Molecular Basis of Bacterial Pathogenesis, first edition, Academic Press: United States.

16. Kudva I. T., Cornick N. A., Plummer P. J., Zhang Q., T. L., Bannantine J.P. and Bellaire B. H. (2016) Virulence Mechanisms of Bacterial Pathogens. Fifth Edition, ASM: Washington.

17. Peterson J. W. (1996) Bacterial Pathogenesis In: Medical Microbiology, 4<sup>th</sup> Edition. Editor by Samuel Baron, Galveston, Texas, Link to the book: https://www.ncbi.nlm.nih.gov/books/NBK8526/

18. Rosenberg E. (2005) The diversity of bacterial pathogenicity mechanisms. Genome Biol.6 (5):320

19. Schmidt H. and Hensel M. (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev. 17(1):14-56.

20. Idowu A., Mzukwa, A., Harrison, U., Palamides P., Haas R., Mbao M., Mamdoo R., Bolon J., Jolaiya T., Smith S., Ally R., Clarke A. and Njom H. (2019) Detection of Helicobacter pylori and its virulence genes (cagA, dupA and vacA) among patients with

gastroduodenal diseases in Chris Hani Baragwanath Academic Hospital, South Africa. BMC Gastroenterol. 19:73.

21. Kao C. Y., Sheu B. S. and Wu J. J. (2006) Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical Journal 39, 1, 14-23

22. Kusters J.G., van Vliet A.H.and Kuipers E. J. (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 19(3):449-490.

23. Pine L., Howell A. Jr and Watson S.J. (1960) Studies of the morphological, physiological, and biochemical characters of Actinomyces bovis. J Gen Microbiol. 23:403-424.

24. Testerman T.L. and Morris J. (2014) Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol. 20(36):12781-12808.

25. Chisari F.V., Isogawa M. and Wieland S.F. (2010) Pathogenesis of Hepatitis B virus infection. Pathol Biol (Paris). 58(4):258-66.

26. Krajden M., McNabb G. and Petric M. (2005) The laboratory diagnosis of Hepatitis B virus. Can J Infect Dis Med Microbiol.16 (2):65-72.

27. Wilkins T., Sams R. and Carpenter M. (2019) Hepatitis B: Screening, Prevention, Diagnosis, and Treatment. Am Fam Physician. 99(5):314-323.

28. Wu C.C., Chen Y.S., Cao L., Chen X.W. and Lu M.J. (2018) Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World J Gastroenterol. 21; 24(31):3488-3499.

29.Hedayati M.T., Pasqualotto A.C., Warn P.A., Bowyer P. and Denning DW. (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 153(Pt 6):1677-1692.

30. Jabra-Rizk M.A., Kong E.F., Tsui C., Nguyen M. H., Clancy C. J., Fidel P. L., Jr. and Noverr M. (2016) Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infect Immun. 84(10):2724-2739.

31.Martins N., Ferreira I., Barros L., Silva S. and Henriques M. (2014). Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia. 177(5-6): 223-240

32. Rudramurthy S.M., Paul RA., Chakrabarti A., Mouton J.W. and Meis J.F. (2019) Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J Fungi (Basel). 5(3):55 33. Petri W. A., Jr. and Singh U. (1999) Diagnosis and Management of Amebiasis. Clinical Infectious Diseases. 29(5):1117–1125.

34. Rumsey P. and Waseem M. Giardia Lamblia Enteritis (2020). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Available from: https://www.ncbi.nlm.nih.gov/books/NBK531495/

35. Farthing M.J.G. (1993) Pathogenesis of giardiasis. Transactions of The Royal Society of Tropical Medicine and Hygiene. 87(3):17–21.

36. Hooshyar H., Rostamkhani P., Arbabi M.and Delavari M. (2019) Giardia lamblia infection: review of current diagnostic strategies. Gastroenterol Hepatol Bed Bench 12(1):3-12.

37. https://www.britannica.com/science/algae/Flagella

38. https://www.britannica.com/science/Noctiluca

39. https://www.mdpi.com/2072-6651/13/7/465

40. http://speciesidentification.org/species.php?species\_group=dinoflagellates&i d=69



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Molecular Biology II |
|---------------------|----------------------|
| Course Code         | 21SMMB232            |
| Semester            | III                  |
| No. of Credits      | 4                    |

Aims & Objectives of the Course

| Sr. No. | Objectives                                                                         |  |  |  |
|---------|------------------------------------------------------------------------------------|--|--|--|
| 1.      | To enrich students' knowledge related to Molecular Biology                         |  |  |  |
| 2.      | To inculcate the concepts of cell and Molecular Biology<br>of cancer               |  |  |  |
| 3.      | To make students acquainted with the concepts of RNA interference and RNA splicing |  |  |  |

| Sr. No. | Learning Outcome                                                                                  |  |
|---------|---------------------------------------------------------------------------------------------------|--|
| 1.      | Students will understand the concepts of Molecular Biology                                        |  |
| 2.      | Students will be able to understand the concept of Metabolomics.                                  |  |
| 3.      | Students will understand the concept and applications of transgenic plants and transgenic animals |  |

# 21SMMB232 Molecular Biology II

# **Core Compulsory Theory Paper**

#### **Total: 4 Credits**

#### Workload: 15hrs /credit

| Credit | Credit                                                    | Workload |
|--------|-----------------------------------------------------------|----------|
| No.    |                                                           |          |
| Ι      | Cell and Molecular Biology of Cancer                      | 15       |
|        | A. The genetics of normal and malignant cells             |          |
|        | Normal chromosomal structure/function,                    |          |
|        | gene transcription, DNA repair mechanisms;                |          |
|        | gene polymorphisms, mini and microsatellites;             |          |
|        | genome instability, gene amplification and deletion.      |          |
|        | B. Normal and aberrant mechanisms of cell growth          |          |
|        | control                                                   |          |
|        | Control of normal cell growth and behaviour; Altered      |          |
|        | expression, function and control of these mechanisms in   |          |
|        | malignancy; Role of mitotic kinases; Gene promoters       |          |
|        | and their activity in normal and malignant cells.         |          |
|        | C. Using gene therapy and immunotherapy to treat          |          |
|        | cancer                                                    |          |
|        | Biomarkers of response to therapy: using circulating      |          |
|        | cells and DNA, biopsies, surrogate tissues, body fluids,  |          |
|        | non-invasive imaging                                      |          |
| II     | Genetically modified plants and animals                   | 15       |
|        | A. Genetically modified organisms- social and ethical     |          |
|        | issues                                                    |          |
|        | <b>B.</b> Gene augmentation and gene therapy              |          |
|        | C. Applications in medicine – prevention, early detection |          |
|        | and cure of diseases                                      |          |
|        | D. Applications of transgenic plants and animals -        |          |
|        | advantages and disadvantages                              |          |

|     | E. Transgenic model with CRISPR/Cas9 system              |    |
|-----|----------------------------------------------------------|----|
| III | RNA splicing and RNA interference                        | 15 |
|     | A. RNA splicing:                                         |    |
|     | • Nuclear splicing, spliceosome and small nuclear RNAs,  |    |
|     | group I and group II introns, Cis- and Trans- splicing   |    |
|     | reactions, tRNA splicing, alternate splicing.            |    |
|     | • Regulation of translation, co-and post-translational   |    |
|     | modifications of proteins, Dipeptide assay, Tripeptide   |    |
|     | assay, In vitro translation.                             |    |
|     | B. RNA interference:                                     |    |
|     | • The concept of RNAi (RNA interference) and discovery,  |    |
|     | Gene silencing, Gene activation, Biogenesis and          |    |
|     | Regulatory roles of non-coding RNAs - miRNA, siRNA,      |    |
|     | piRNA, lncRNA. RNAi-mediated gene silencing -            |    |
|     | Components and Mechanism, RISC and Proteins.             |    |
| IV  | Metabolomics                                             | 15 |
|     | A. Introduction to metabolomics: Metabolome,             |    |
|     | Metabonomics, Metabolite profiling, Metabolome           |    |
|     | fingerprinting, Role of Biomarker in metabolomics,       |    |
|     | Tools of metabolome studies: NMR, MS, GC, LC, IR         |    |
|     | and its application.                                     |    |
|     | <b>B.</b> Metabolome projects of plant and human, Future |    |
|     | perspective of metabolomics                              |    |

## **References:**

- 1. Hallmarks of Cancer: The Next Generation. Hanahan, Weinberg. (2011) Cell. 4(5):646-674
- 2. Cancer and Its Management, 6th Edition. Souhami, Tobias. (2007) John Wiley And Sons Ltd
- 3. Practical Clinical Oncology. Hanna, Crosby, Macbeth. (2008) Cambridge
- 4. Intrinsic Tumour Suppression. Lowe, Cepera, Evan. (2004) Nature. 432:307-315
- 5. Cancer genes and the pathways they control. Vogelstein, Kinzler. (2004) Nature Medicine. 10:789-799

MSc Microbiology

- 6. Chemotherapy and the war on cancer. Chabner, Roberts. (2005) Nature Reviews Cancer. 5:65-72
- 7. Cancer immunotherapy revisited. Lesterhuis W, Haanen J, Punt C. (2011) Nature Reviews Drug Discovery. 10:591-600
- 8. Past, present and future of molecular and cellular oncology. Lorenzo G, Vitale I, Guido K. (2011) Frontiers in Oncology. 1:1
- 9. The grand challenges to cellular and molecular oncology. Galluzzi L, Kroemer G. (2011) Frontiers in Oncology. 1:1
- 10. The Biology of Cancer, 2<sup>nd</sup> edition. Weinberg RA. (2013) Garland Science MSc in Oncology
- 11.Cell and Molecular Biology of Cancer | 2017/18 Learning resources | Page 12 of 13
- 12.Cell death signaling and anticancer therapy. Galluzzi L, Vitale I, Vacchelli E, Kroemer G (2011) Frontiers in Oncology. 1:1
- 13.Cancer Biology, 4th edition. Ruddon RW. (2007) Oxford University Press
- 14.Cancer Biology, 3<sup>rd</sup> edition. King, Robins. (2006) Prentice Hall
- 15. The Molecular Biology of Cancer: A Bridge from Bench to Bedside, 2<sup>nd</sup> edition. Pelengaris ES, Khan M. (2013) Wiley Blackwell
- 16. The Basic Science of Oncology, 5th edition. Tannock, Hill et al. (2013) McGraw-Hill Medical
- 17.Introduction to the Cellular and Molecular Biology of Cancer, 4th edition. Knowles, Selby. (2005) Oxford University Press Other reading
- 18.Watson J. D., Baker T. A., Gann A., Bell S. P., Levine M. and Losick R. 7th Edition. Molecular Biology of the Gene. Pearson-USA
- 19.Lewin B. (2011) Genes X. Jones and Bartlett Publication.
- 20.Weinberg, R. A. (2013) The Biology of Cancer. 2nd edition. Garland Science. 2. Alberts, B. et al. (2014) Molecular Biology of the Cell. 6th edition. W. W. Norton & Co
- 21.Bibekanand Mallick, Zhumur Ghosh, regulatory RNAs: Basics, Methods and Applications, 1st edition (2012), Springer-Verlag, Berlin Heidelberg, ISBN-9783642225161
- 22.Barik Sailen (Ed.),, RNAi: design and application, 2008, Humana Press, Totawa, ISBN-9781588298744



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Nanobiotechnology and its applications |
|---------------------|----------------------------------------|
| Course Code         | 21SMMB233                              |
| Semester            | III                                    |
| No. of Credits      | 4                                      |

#### Aims & Objectives of the Course:

| Sr. No. | Objectives                                                     |
|---------|----------------------------------------------------------------|
| 1.      | To introduce the concepts of Nanobiotechnology                 |
| 2.      | To make students learn the concepts of nanoparticles and their |
|         | uses in depth                                                  |
| 3.      | To give students the knowledge of the applications             |
|         | of nanobiotechnology in different industries.                  |

| Sr. No. | Learning Outcome                                               |
|---------|----------------------------------------------------------------|
| 1.      | Students will be acquainted with the concepts                  |
|         | of Nanobiotechnology                                           |
| 2.      | Students will understand the applications of nanobiotechnology |
|         | in various fields                                              |
| 3.      | Students will get knowledge of nano carriers, nano sensors and |
|         | their uses in different fields.                                |

# 21SMMB233: Nano biotechnology and its applications

# **Core Compulsory Theory Paper**

# Total: 4 Credits Workload: 15hrs /credit

| Credit No. | Credit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Workload |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ι          | Nanobiotechnology in Medical Science                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15       |
|            | A. Concept of Nanobiotechnology in Nanomedicine                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|            | <b>B.</b> Two main branches in nanomedicine: Diagnostics and Therapeutics                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | C. Different Nanoparticles and their Medical applications                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| II         | Nanobiotechnology in Food Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15       |
|            | A. Food Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|            | a) Nanoencapsulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|            | b) Food processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|            | c) Bio-security - Food analysis and contaminant detection                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | <b>B</b> . Food Packaging (Nanoscience in Food Packaging)                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | Nanopackaging for enhanced shelf life - Smart/Intelligent                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | packaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| III        | Nanobiotechnology in Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15       |
|            | <ul> <li>A. Various types of nanomaterial utilized in agriculture,<br/>Soil health-Different Indicators (Assays) for<br/>determining soil health.</li> <li>B. Use of Nanomaterials to Promote Plant Growth and<br/>Stress Tolerance</li> <li>C. Nanoformulations of agrochemicals for applying<br/>Nanopesticides and Nanourea and mixed fertilizers for<br/>crop improvement. Nano fungicides, Nano herbicides</li> <li>D. Nanosensors for early detection of plant diseases</li> </ul> |          |

| IV | Nanobiotechnology in Waste management                  | 15 |  |
|----|--------------------------------------------------------|----|--|
|    | A. Nanobiotechnology for E-waste management            |    |  |
|    | <b>B.</b> Nanobiotechnology for waste water management |    |  |
|    | C. Nanobiotechnology for solid waste management        |    |  |

#### **References:**

1.Nanobiotechnology: Concepts, Applications and Perspectives (2004), Christof M. Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.

2.Nanobiotechnology - II more concepts and applications. (2007) - Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.

3. Nanotechnology in Biology and Medicine: Methods, Devices, and Applications.

4."Nanotechnology-principles and applications" by S.K. Kulkarni, Capital pub. Com.

5."Nanotechnology: A gentle introduction to the next big" by Mark and Daniel Ratner, person low price.

6."Nano: The Essentials" by T. Pradeep. Tata McGraw Hill, New Delhi (2007)

7."Introduction to Nanotechnology" by Charles P Poole Jr and Frank J Ownes, John Wiley Sons, Inc (2003)

8. "Nanocomposite Science and Technology" by Pulickel M. Ajayan, Linda S. Schadler, PaulV.Braun, Wiley – VCH Verlag, Weiheim (2003)

9. "Nanotechnology: Basic sciences and emerging technologies" by Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkar Raguse, Overseas Press (2005).

10. "Instrumental Methods of Analysis" by Willard, 2000.

11."Instrumental Methods for Chemical Analysis" by Ewing. etal 2000.

12."Handbook of nanotechnology" by Bhushan

13. "Nanostructures & Nano Materials" by Ghuzang Cao.

14. "Nanoscale Technology in Biological Systems" by Cooper, Springer Verlag

15. "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" by Guozhong Cao

16. "Surface Science: Foundations of Catalysis and Nanoscience" by Kurt W. Kolasinski

17.Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance Lijuan Zhao, Li Lu, Aodi Wang, Huiling Zhang, Min Huang, Honghong Wu, Baoshan Xing, Zhenyu Wang, and Rong Ji Journal of Agricultural and Food Chemistry 2020 68 (7), 1935-1947 DOI: 10.1021/acs.jafc.9b06615

MSc Microbiology

18. Neha Pradhan, Surjit Singh, Nupur Ojha, Anamika Shrivastava, Anil

Barla, Vivek Rai, Sutapa Bose, "Facets of Nanotechnology as Seen in Food

Processing, Packaging, and Preservation Industry", BioMed Research

International, vol. 2015, Article ID 365672, 17 pages, 2015.

19. Nanoparticle Assemblies and Superstructures by Nicholas A. Kotov, CRC, 2006.

20.Nanotechnology in agriculture and food production by Jennifer Kuzma and Peter VerHage, Woodrow Wilson International, 2006.

21. Bionanotechnology by David S Goodsell, John Wiley & Sons, 2004.

22. Nanobiomaterials Handbook by Balaji Sitharaman, Taylor & Francis Group, 2011.

23.https://www.frontiersin.org/articles/10.3389/fmicb.2017.01501/full

24.https://www.sciencedirect.com/science/article/pii/B9780128228784000171

25. Wiesner, M.R., and Bottero, J.Y. (Ed.) "Environmental Nanotechnology: Applications and Impacts of Nanomaterials" McGraw-Hill, New York. 2007

26. Diallo, M., Duncan, J., Savage, N., Street, A., and Sustich, R. (Eds). "Nanotechnology Applications for Clean Water" William Andrew. 2008

27.Kole, C., et al., Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 2013. 13(1): p. 37.

28.https://www.frontiersin.org/articles/10.3389/fmicb.2017.01735/full



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Cell Culture Techniques |
|---------------------|-------------------------|
| Course Code         | 21SMMB234A              |
| Semester            | III                     |
| No. of Credits      | 2                       |

#### 21SMMB234A Cell Culture Techniques

Choice based Optional Theory Paper (Elective) Total: 2 Credits Workload: -15 hrs /credit

## (Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

| Credit No. | Credit                                                       | Workload |
|------------|--------------------------------------------------------------|----------|
| Ι          | Animal Cell Culture Techniques:                              | 15       |
|            | A. Definition of terms: Primary cell cultures and cell       |          |
|            | lines, established cell lines, suspension and anchorage      |          |
|            | dependent cell cultures.                                     |          |
|            | <b>B.</b> Transformation of cells in culture, culture media, |          |
|            | factors affecting cells in culture.                          |          |
| II         | Commonly used cell culture systems and cell lines            | 15       |
|            | in immunological studies:                                    |          |
|            | A. Cell culture systems and their applications: primary      |          |
|            | lymphoid cell culture cloned lymphoid cell lines,            |          |
|            | hybrid lymphoid cell lines.                                  |          |
|            | <b>B.</b> Immuno-modulation                                  |          |



# M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Practicals based on Cell Culture Techniques |
|---------------------|---------------------------------------------|
| Course Code         | 21SMMB236A                                  |
| Semester            | III                                         |
| No. of Credits      | 2                                           |

## Aims & Objectives of the Course

| Sr. No. | Objectives                                                          |
|---------|---------------------------------------------------------------------|
| 1.      | To make students aware about the different Cell Culture Techniques  |
| 2.      | To make them understand the applications of Cell Culture Techniques |
| 3.      | To teach them Chick embryo fibroblast cell culture                  |

| Sr. No. | Learning Outcome                                                                     |
|---------|--------------------------------------------------------------------------------------|
| 1.      | To make the students understand the methods of Cell Culture Techniques               |
| 2.      | To make them understand the techniques used for Chick embryo fibroblast cell culture |

## 21SMMB236A Practicals based on Cell Culture Techniques Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

#### (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                                                                                                                                                                                                 | Workload |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ι          | Animal Cell Culture Techniques:                                                                                                                                                                                                        | 15       |
|            | <ul> <li>A. Density gradient-based separation of peripheral lymphocytes</li> <li>B. Preparation of Lymphocyte culture</li> <li>C.Effect of immunomodulators on lymphocyte proliferation (Stimulatory and inhibitory effect)</li> </ul> |          |
| II         | Commonly used cell culture systems and cell lines in immunological studies:                                                                                                                                                            | 15       |
|            | A. Chick embryo fibroblast cell culture                                                                                                                                                                                                |          |

#### **References:**

- 1. Freshney R. I. (2005) Culture of Animal Cells: A Manual of Basic Technique.5th Ed. John Wiley and Sons, Inc.
- 2. Masters J. R. W. (2000). Animal Cell Culture A Practical Approach. 3rd Ed. Oxford University Press.
- 3. Mather J. P. and Penelope E. R. (1998) Introduction to Cell and Tissue Culture Theory and Technique. Plenum Press, New York
- Kindt T. J., Goldsby R. A., Osborne B. A. and Kuby J. (2007) Kuby Immunology. 6th Ed. W. H. Freeman and Co.
- Patwardhan B., Diwanay S.and Gautam M. (2006) Botanical immunomodulators and chemoprotectants in cancer therapy. In Drug Discovery and Development Volume I: Drug Discovery. Ed. Chorghade Mukund S. Wiley- Interscience, John Wiley and Sons Inc. USA. 405-424.
- 6. Hernandez R. and Brown D.T. (2010) Growth and maintenance of chick embryo fibroblasts (CEF). Curr Protoc Microbiol.17:A.4I.1–A.4I.8



M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS- Autonomy 21 Pattern)

| Course/ Paper  | Bioremediation and Biomass utilization |
|----------------|----------------------------------------|
| Title          |                                        |
| Course Code    | 21SMMB234B                             |
| Semester       | III                                    |
| No. of Credits | 2                                      |

#### Aims & Objectives of the Course

| Sr. | Objectives                                                    |
|-----|---------------------------------------------------------------|
| No. |                                                               |
| 1.  | To introduce the concepts of bioremediation                   |
| 2.  | To make students learn the concepts of biomass utilization    |
| 3.  | To make them understand the concepts of microbial degradation |

| Sr. | Learning Outcome                                                  |
|-----|-------------------------------------------------------------------|
| No. |                                                                   |
| 1.  | Students develop an interest in the field of bioremediation       |
| 2.  | They understand the concepts of biomass utilization               |
| 3.  | Students understand the concepts and use of microbial degradation |

## 21SMMB234B Bioremediation and Biomass utilization Choice based Optional Theory Paper (Elective) Total: 2 Credits Workload: -15 hrs /credit

#### (Total Workload: -2 credits x 15 hrs = 30 hrs in semester)

| Credit No. | Credit                                                          | Workload |
|------------|-----------------------------------------------------------------|----------|
| Ι          | Bioremediation                                                  | 15       |
|            | A. Microbial Degradation of xenobiotics                         |          |
|            | B. Engineered bio- degradative pathways: Camphor,               |          |
|            | octane, xylene, naphthalene degradation pathway                 |          |
|            | C. Aromatic compound degradation: Manipulation by               |          |
|            | plasmid transfer, Manipulation by gene alteration               |          |
| II         | Biomass utilization                                             | 15       |
|            | A. Utilization of starch and cellulose.                         |          |
|            | <b>B.</b> Isolation of the prokaryotic and eukaryotic cellulase |          |
|            | genes, manipulation of the cellulase gene, advantages of        |          |
|            | using Zymomonas mobilis.                                        |          |
|            | C. Alcohol, fructose, and silage production; advantages         |          |
|            | of each                                                         |          |
|            | <b>D.</b> Improvisation of the processes of alcohol production  |          |
|            | E. Improvisation of the processes of fructose production        |          |
|            | F. Commercial production processes of alcohol and               |          |
|            | fructose                                                        |          |



#### M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

#### (CBCS – Autonomy 21 Pattern)

| Course/ Paper  | Practicals Based on Bioremediation and Biomass utilization |
|----------------|------------------------------------------------------------|
| Title          |                                                            |
| Course Code    | 21SMMB236B                                                 |
| Semester       | III                                                        |
| No. of Credits | 2                                                          |

#### Aims & Objectives of the Course

| Sr. No. | Objectives                                                    |  |
|---------|---------------------------------------------------------------|--|
| 1.      | To introduce the concepts of bioremediation                   |  |
| 2.      | To make students learn the concepts of biomass utilization    |  |
| 3.      | To make them understand the concepts of microbial degradation |  |

| Sr. | Learning Outcome                                                  |
|-----|-------------------------------------------------------------------|
| No. |                                                                   |
| 1.  | Students develop an interest in the field of bioremediation       |
| 2.  | They understand the concepts of biomass utilization               |
| 3.  | Students understand the concepts and use of microbial degradation |

# 21SMMB236B Practicals Based on Bioremediation and Biomass utilization Choice based Optional Practical Paper (Elective)

#### Total: 2 Credits Workload: -30 hrs /credit

## (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                                        | Workload |
|------------|-------------------------------------------------------------------------------|----------|
| Ι          | Bioremediation                                                                | 15       |
|            | A. Degradation of para nitrophenol using <i>Pseudomonas</i>                   |          |
|            | putida                                                                        |          |
|            | <b>B.</b> Low density plastic/bioplastic degradation using bacterial isolates |          |
|            | C. Demonstration of DNA finger-printing technique                             |          |
| II         | Biomass utilization                                                           | 15       |
|            | A. Biodiesel production using micro-algae                                     |          |
|            | B. Isolation of bio-emulsifier producing organisms for                        |          |
|            | degradation of aromatic compounds                                             |          |

#### **References:**

1.Glick B. R., Pasternak J. J., Cheryl L. and Patten C. L. (1998) Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington D C, ASM Press

2. Jaiswal S., Singh D. K. and Shukla P. (2019) Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol. 10:87

3. Karpouzas D. G. and Singh B. K. (2006) Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis. Adv Microb Physiol. 51:119-185.

4. .Ramos J. L., González-Pérez M. M. and Caballero A., van Dillewijn P. (2015) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol. 16(3): 275-281.

5. Weaver R. (2007) Molecular Biology. 4th Edition. Mc-Grew Hill Publication.

6. Gupta G. V. (2016) New and Future Developments in Microbial Biotechnology and Bioengineering. Aspergillus System Properties and Applications. Elsevier Book Publication.

7. Lal P.B., Wells F.M., Lyu Y., Ghosh I.N., Landick R. and Kiley P.J. (2019) A markerless method for genome engineering in Zymomonas mobilis ZM4. Front Microbiol. 10: 2216

8. Sarris, D.and Papanikolaou S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Engineering Life Sciences. 16: 307-329

9. Arora P. K., Srivastava A., and Singh V. P. (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater. 266:42-59.

10. Bánfalvi G and Antoni F. (1990) DNA-based diagnosis. Orv Hetil. 131(18):953-964.

11. Kulkarni M. and Chaudhari A. (2006) Biodegradation of p-nitrophenol by P. putida. Bioresour Technol. 97(8): 982-988.

12. Kumar Khanna V. (2007) Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering. Biotechnol Adv. 25(1):85-98.

13. Li J., Kim H. R., Lee H. M. and Yu H. C., Jeon E., Lee S. and Kim D. (2020) Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ. 720:137616.

14. Qiu X., Wu P., Zhang H., Li M. and Yan Z. (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of pnitrophenol.

Bioresour Technol. 100(21):5243-5248.

15. Roohi, Bano K., Kuddus M., Zaheer M.R., Zia Q., Khan MF., Ashraf G.M., Gupta A. and Aliev G. (2017) Microbial Enzymatic Degradation of Biodegradable Plastics. Curr Pharm Biotechnol. 18(5):429-440.

16. Sangeetha Devi R., Ramya R., Kannan K., Robert Antony A. and Rajesh Kannan V. (2019) Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India Mar Pollut Bull. 138:549-560.



# M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

| Course/ Paper  | Microbial Virus Technology |
|----------------|----------------------------|
| Title          |                            |
| Course Code    | 21SMMB234C                 |
| Semester       | III                        |
| No. of Credits | 2                          |

#### Aims & Objectives of the Course

| Sr.<br>No. | Objectives                                                      |  |  |
|------------|-----------------------------------------------------------------|--|--|
| 1.         | To make students acquainted with the concept of isolation and   |  |  |
|            | characterization of bacteriophages.                             |  |  |
| 2.         | To inculcate various concepts of bacteriophage growth kinetics. |  |  |
| 3.         | To teach them about Phage typing.                               |  |  |
|            |                                                                 |  |  |

| Sr. | Learning Outcome                                                          |
|-----|---------------------------------------------------------------------------|
| No. |                                                                           |
| 1.  | Students understand the concepts of isolation and characterization of     |
|     | bacteriophages.                                                           |
| 2.  | Students understand the various concepts of bacteriophage growth kinetics |
| 3.  | Students learn about Phage typing.                                        |

# 21SMMB234C Microbial Virus Technology Choice based Optional Theory Paper (Elective)

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: -2 credits x 15 hrs = 30 hrs in semester)

| Credit No. | Credit                                                               | Workload |
|------------|----------------------------------------------------------------------|----------|
| Ι          | A. Isolation and characterization of bacteriophages:                 | 15       |
|            | i) Abundance of bacteriophages in the environment.                   |          |
|            | ii) Bacteriophage life cycle: Lytic, Lysogeny and chronic            |          |
|            | cycle.                                                               |          |
|            | iii) Genetic basis of lytic and lysogenic cycles.                    |          |
|            | <b>B.</b> Isolation of bacteriophages from various                   |          |
|            | environmental samples:                                               |          |
|            | i) Water                                                             |          |
|            | ii) Soil                                                             |          |
|            | iii)Clinical samples                                                 |          |
|            | C. Bacteriophage growth kinetics:                                    |          |
|            | i) Concept and calculations of EoP, MOI                              |          |
|            | ii) Adsorption Kinetics                                              |          |
|            | iii) One step growth curve                                           |          |
|            | D. Phage based bacterial detection: Phage typing                     | 1.5      |
| II         |                                                                      | 15       |
|            | i) Bacteriophages as biocontrol agents                               |          |
|            | ii) Phage therapy                                                    |          |
|            | iii) Phage lysine therapy (with any one example)                     |          |
|            | iv) Phage display                                                    |          |
|            | v) CRISPR-CAS-9                                                      |          |
|            | <b>B.</b> Phage based technology for pathogen control in aqua        |          |
|            | systems<br>C Destaviantes es fan his sentrel of his films on mediesl |          |
|            | <b>C.</b> Bacteriophages for biocontrol of biofilms on medical       |          |
|            | devices                                                              |          |
|            | <b>D.</b> Bacteriophage based technology for pathogen control        |          |
|            | in poultry                                                           |          |

| E. | Bacteriophages in food preservation |  |
|----|-------------------------------------|--|
| F. | Introduction of Mycoviruses         |  |
| G. | Introduction to algal viruses       |  |

## **References:**

1. Ahiwale Sangeeta (2013) Bacteriophages against enteric bacterial pathogens and their potential for bioremediation of pathogen infested water bodies. PhD thesis, University of Pune, Pune, Maharashtra

2. Forest Rohwer, Merry Youle, Heather Maughan and Nao Hisakawa (2014) Life in Our Phage World. A centennial field guide to the Earth's most diverse inhabitants. Illustrations by Leah L Pantéa and Benjamin Darby (Book)

3. Hobbs Z. and Abedon S. T. (2016) Virology Diversity of phage infection types and associated terminology: the problem with Lytic or lysogenic. Minireview. FEMS Microbiology Letters, 363, , fnw047 doi: 10.1093/femsle/fnw047, 2016

4. Azeredo J. and Sillankorva S. Editors. (2018) Bacteriophage Therapy from Lab to Clinical Practice. In Methods in Molecular Biology. Walker J. M. Series Editor. Humana Press Book. Springer.

5. Clokie M. R. J. and Kropinski A. M. Editors (2009). Bacteriophages: Methods and Protocols. Volume1: Isolation, Characterization and Interactions. Springer Book

6.Effect of bacterial growth rate on bacteriophage population growth rate, Dominik Nabergoj, Petra Modic, Ales Podgornik, Wiley Microbiology open, 2017

7.Schofield D.A., Sharp N.J. and Westwater C. (2012) Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage. 2(2):105-283

8. McLaughlin M. R. and Brooks J. P. (2008) EPA worst case water microcosms for testing phage biocontrol of Salmonella. J Environ Qual. 37: 266-271 3. Sharma S., Soumya Chatterjee S., Datta S., Rishika Prasad R., Dubey D., Prasad R. K. and Vairale M.G. (2017) Bacteriophages and its applications: an overview. Folia Microbiol. 62(1):17-55

9. Singh M.K., Maurya A. and Kumar S. (2020) Bioaugmentation for the treatment of waterborne pathogen contamination water. Waterborne Pathogens. 189–203

10.Culot A., Grosset N. and Gautier M. (2019) Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture. Elsevier. 513:734423.

11. Kutter E. and Sulakvelidze A. Editors. (2004) Bacteriophages: Biology and Applications. Edition Illustrated. Publisher-CRC Press.

12. Nakai T. and Park S. C. (2002) Bacteriophage therapy of infectious diseases in aquaculture.

Mini-review. Research in Microbiology. 153: 13–18 4. Vinod M. G., Shiva M.M., Umesha K.R., Rajaveera B.C., Krohne G. and Karunasagar J. (2006) Isolation of Vibrio harveyi bacteriophage with potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 55: 117-124

13.Ahiwale S.S. (2011) In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr. Microbiology. 62:335-340 2. Haradaa L. K., Silvaa E.C., Camposa W. F., Del Fiola F. S., Vilaa M., Dąbrowskab K., Krylovc V. N. and Balcão V. M. (2018)

14.Applications of bacteriophages: State of the art, Review article. Microbiol Res. 212- 213:38-58 3. Lu T. K. and Collins J. J. (2007)

15.Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of National Academy of Science. 104: 11197-11202

16.Żbikowska K, Michalczuk M, Dolka B. (2020) The Use of Bacteriophages in the Poultry Industry. Review. Animals (Basel).10(5):872

17. Gorski A., Miedzybrodzki R. and Borysowski J. (Editors). (2019) Phage Therapy: A Practical Approach. Springer International Publishing



#### M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/Paper   | Practicals based on Microbial Virus Technology |
|----------------|------------------------------------------------|
| Title          |                                                |
| Course Code    | 21SMMB236C                                     |
| Semester       | III                                            |
| No. of Credits | 2                                              |

#### Aims & Objectives of the Course

| Sr. | Objectives                                                              |
|-----|-------------------------------------------------------------------------|
| No. |                                                                         |
| 1.  | To make students acquainted with the concept of isolation, purification |
|     | and preservation of bacteriophages                                      |
| 2.  | To inculcate various concepts of bacteriophage growth kinetics          |
| 3.  | To teach them about applications of bacteriophages                      |

| Sr. | Learning Outcome                                                             |
|-----|------------------------------------------------------------------------------|
| No. |                                                                              |
| 1.  | Students understand the concepts of isolation, purification and preservation |
|     | of bacteriophages                                                            |
| 2.  | Students understand the various concepts of bacteriophage growth kinetics    |
| 3.  | Students learn about applications of bacteriophages                          |
|     |                                                                              |

#### 21SMMB236C Practicals Based on Microbial Virus Technology Choice based Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                       | Workload |
|------------|--------------------------------------------------------------|----------|
| Ι          | Isolation, Purification and Preservation of phages:          | 15       |
|            | A. Isolation of bacteriophages from Soil/ water/ clinical    |          |
|            | sample                                                       |          |
|            | <b>B.</b> Isolation of algal viruses (Phycoviruses)          |          |
|            | C. Isolation of fungal viruses (Mycoviruses)                 |          |
|            | <b>D.</b> Purification & preservation of the isolated phage  |          |
| II         | Bacteriophage kinetics and Applications:                     | 15       |
|            | A. Determination of adsorption kinetics of phage and EoP     |          |
|            | (If cross reactive)                                          |          |
|            | <b>B</b> . One step growth curve                             |          |
|            | C. Determination of phage stability considering pH and       |          |
|            | temperature                                                  |          |
|            | <b>D</b> .In-vitro application of phages as biocontrol agent |          |

#### **References:**

1. Ackerman H.W. (2009) Phage classification and characterization. In: Clokie MRJ, Kropinski AM (Eds) Bacteriophages: methods and protocols, Volume: Isolation, characterization and interactions, Vol. 501. Humana Press, New York.

2. Ahiwale Sangeeta (2013) Bacteriophages against enteric bacterial pathogens and their potential for bioremediation of pathogen infested water bodies PhD thesis, University of Pune, Pune, Maharashtra.

3. Ahiwale S.S. (2011) In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr. Microbiology. 62:335-340

4.Balan A. and Padilla G. (1997) New thermal inducible phages isolated from tropical soils. Brazilian Journal of Genetics. 20: 4

5. Nabergoj D., Modic P. and Podgornik A. (2018). Effect of bacterial

growth rate on bacteriophage population growth rate. Microbiology Open, 7, e00558.

6. Marei E.M. and Elbaz R.M. (2013) Isolation and molecular characterization of three virulent actinophages specific for Streptomyces flavovirens. Journal of Virology Research. 2(1):12-17

7. McLaughlin M.R. and Brooks J.P. (2008) EPA worst case water microcosms for testing phage biocontrol of Salmonella. J Environ Qual. 37: 266-271

8. Vinod M. G., Shiva M. M., Umesha K. R., Rajaveera B. C., Krohne G. and Karunasagar J. (2006) Isolation of Vibrio harveyi bacteriophage with potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 55: 117-124

9. Coy S. R., Gann E. R., Pound H. L., Short S. M. and Wilhelm S. W. (2018) Viruses of eukaryotic algae: Diversity, Methods for detection and future directions.Viruses.10: 487.

10. Lanning S. and Williams S.T. (1982) Methods for the direct isolation and enumeration of Actinophages in soil. Journal of General Microbiology, 128: 2063-2071



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21 Pattern)

| <b>Course/ Paper Title</b> | Immunology, Clinical, Molecular Biology and applied |  |
|----------------------------|-----------------------------------------------------|--|
|                            | nanobiotechnology (Practicals based on compulsory   |  |
|                            | theory credits)                                     |  |
| Course Code                | 21SMMB235                                           |  |
| Semester                   | III                                                 |  |
| No. of Credits             | 4                                                   |  |

## Aims & Objectives of the Course

| Sr.<br>No. | Objectives                                                    |
|------------|---------------------------------------------------------------|
| 1.         | To make students aware about Molecular Biology techniques     |
| 2.         | To make them familiar to Immunology and Clinical Microbiology |
| 3.         | To teach them applications of nanobiotechnology               |

| Sr.<br>No. | Learning Outcome                                                       |  |
|------------|------------------------------------------------------------------------|--|
| 1.         | Students will learn about Molecular Biology techniques                 |  |
| 2.         | Students will be made familiar to Immunology and Clinical Microbiology |  |
| 3.         | Students will be acquainted with applications of nanobiotechnology     |  |

# 21SMMB235 Immunology, Clinical, Molecular Biology and Applied Nanotechnology (Practicals based on compulsory theory credits) Core Compulsory Practical Paper Total: 4 Credits Workload: -30 hrs /credit

#### (Total Workload: - 4 credits x 30 hrs = 120 hrs in semester

| Credit No. | Credit                                               | Workload |
|------------|------------------------------------------------------|----------|
| Ι          | Practicals based on Immunology:                      |          |
|            | 1.Precipitation reactions of Antigen - Antibody:     |          |
|            | Single radial diffusion.                             |          |
|            | 2. Rocket Immuno - electrophoresis                   |          |
|            | 3. Agglutination techniques: Determination of iso-   |          |
|            | antibodies titre to human blood group antigens.      |          |
|            | 4. Demonstration of Western Blotting                 |          |
|            | 5. Visit to institute/industry for demonstration of  |          |
|            | CFT/FACS/animal inoculation                          |          |
|            |                                                      |          |
| II         | Practicals based on Clinical Microbiology:           |          |
|            | 1. Isolation and identification of                   |          |
|            | A. Helicobacter pylori                               |          |
|            | B. Actinomycetes                                     |          |
|            | C. Candida albicans                                  |          |
|            | D. Aspergillus flavus.                               |          |
|            | 2. Viral titration by haemagglutination technique    |          |
|            | (Determination of titre)                             |          |
| III        | Practicals based on Molecular Biology II             |          |
|            | 1.Isolation of Plasmid from Bacteria                 |          |
|            | 2. Study of the process of transduction              |          |
|            | 3. Study of the process of DNA damage by comet       |          |
|            | assay.                                               |          |
|            | 4. Study of the process of bacterial conjugation and |          |
|            | transfer of the gene of interest                     |          |

MSc Microbiology

| IV | Practicals based on Applied Nanobiotechnology  |  |
|----|------------------------------------------------|--|
|    | 1. Use of nanoparticles for biofilm inhibition |  |
|    | 2.Removal of dyes by nanoparticles             |  |
|    | 3.Use of nanoparticles in medicine             |  |
|    | 4.Use of nanoparticles in food preservation    |  |

#### **References:**

- Axelsen N. H., Kroll J. and Weeke B. (1973) A manual of quantitative immunoelectrophoresis: methods and applications. Scand. J. Immunol. 2(Suppl. 1): 37-46
- Galvão de França N.D., Cristovão Poli M.C., Almeida Ramos P.G., Rocha Borsoi C.S. and Colella R. (2011) Titers of ABO antibodies in group O blood donors.Rev Bras Hematol Hemoter. 259–262
- 3. Kang S.J., Lim Y.A. and Baik S.Y. (2014) Comparison of ABO antibody titers on the basis of the antibody detection method used. Ann Lab Med. 34:300–306.
- 4. Laurell C. B. (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 15:45–52
- 5. Vaerman J. P. (1981). Single radial immunodiffusion, in methods in enzymology: 73 (Langone, J. J. And Van Vunakis, H, Eds.) New York: 291-305
- 6. Ferguson DA Jr, Li C, Patel NR, Mayberry WR, Chi DS, Thomas E. (1993) Isolation of Helicobacter pylori from saliva. J Clin Microbiol. 31(10):2802-2804.
- 7. Thomas J.E., Gibson G.R., Darboe M.K., Dale A. and Weaver LT. (1992) Isolation of Helicobacter pylori from human faeces. Lancet. 340(8829):1194-1195.
- 8. Joshi KR, Gavin JB. (1974) A simple laboratory method for the rapid identification of Candida albicans. Pathology. 1974; 6(3):231-233.
- 9. Meinhof W, Laschka P, Scherwitz C. (1975) A synthetic medium for rapid chlamydospore formation in Candida albicans Mykosen. 18(7):291-298.
- 10.Gunasekaran M, Hughes WF. (1977) A simple medium for isolation and identification of Candida albicans directly from clinical specimens. Mycopathologia. 61(3):151-157.
- 11. Taber RA, Schroeder HW. (1967) Aflatoxin-producing potential of isolates of the Aspergillus flavus oryzae group from peanuts (Arachis hypogaea). Appl Microbiol. 15(1):140-144.

- 12. Alexander D.J. and Chettle N.J. (1977) Procedures for the haemagglutination and the haemagglutination inhibition tests for avian infectious bronchitis virus. Avian Pathology. 6(1):9-17
- 13. Costabile M. (2010) Determining the Reactivity and Titre of Serum using a haemagglutination Assay J Vis Exp. 2010; (35): 1752. Published online
- Noah D.L., Hill H., Hines D., White E.L.and Wolff M.C. 2009 Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure. Clinical and Vaccine Immunology: CVI. 16(4):558-566.
- 15. World Health Organization. WHO Collaborating Center for Reference and Research on Influenza Chinese National Influenza Center National Institute for Viral Disease Control and Prevention, China CDC (2013) Laboratory Procedures. (20 December 2013) Serological detection of avian influenza A(H7N9) virus infections by modified horse red blood cells haemagglutination-inhibition assay
- 16. https://scholar.google.co.in/scholar?q=nanoparticles+for+biofilm+inhibition&hl=en&as\_sdt=0 &as\_vis=1&oi=scholart#d=gs\_qabs&u=%23p%3DkvKh1-US68YJ
- 17.<u>https://scholar.google.co.in/scholar?q=nanoparticles+for+biofilm+inhibition&hl=en&as\_sdt=0</u> &as\_vis=1&oi=scholart
- 18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470068/



#### M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# Semester IV (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title             | Pharmaceutical Microbiology |  |
|---------------------------------|-----------------------------|--|
| Course Code                     | 21SMMB241                   |  |
| Semester                        | IV                          |  |
| No. of Credits                  | 4                           |  |
| Aims & Objectives of the Course |                             |  |

| Anns & Objectives of the Course |                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------|
| Sr. No.                         | Objectives                                                                                         |
| 1.                              | To enrich students' knowledge related to basic concepts<br>in drug discovery and drug development. |
| 2.                              | To inculcate the knowledge regarding the drug designing pharmacokinetics and pharmacodynamics      |
| 3.                              | To make students acquainted with the concepts of pharmaceuticals.                                  |

| Sr. No. | Learning Outcome                                            |  |
|---------|-------------------------------------------------------------|--|
| 1.      | Students will understand the concepts of drug discovery and |  |
|         | drug development.                                           |  |
| 2.      | Students will be able to understand pharmacokinetics and    |  |
|         | pharmacodynamics.                                           |  |
| 3.      | Students will understand the recent trends for MDR therapy  |  |

| То         | tal: 4 Credits Workload: -15 hrs /credit                                                                                                                                                                                                                                                                                         |          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Credit No. | Credit                                                                                                                                                                                                                                                                                                                           | Workload |
| Ι          | Drug Discovery                                                                                                                                                                                                                                                                                                                   | 15       |
|            | <ul> <li>A. Definition and explanation of terms used in medicinal chemistry (HITS, Lead compound, Lead optimization, Candidate, HTS)</li> <li>B. Nomenclature and Physicochemical properties of drugs</li> </ul>                                                                                                                 |          |
|            | <b>C.</b> Introduction to modern drug discovery, rational drug design: Ligand based and receptor-based drug design. (molecular docking)                                                                                                                                                                                          |          |
| II         | Drug Development                                                                                                                                                                                                                                                                                                                 | 15       |
|            | <ul> <li>A. Classification of drugs based on therapeutic classes, target, mechanism of action, chemistry, etc.</li> <li>B. Preclinical development. Toxicity testing – acute, sub acute, chronic.</li> <li>C. Clinical development: Clinical trials (aims, objectives and conduct). Clinical trials I, II, III and IV</li> </ul> |          |
| III        | Recent trends in combating MDRs                                                                                                                                                                                                                                                                                                  | 15       |
|            | A. Introduction to Recent trends in combating MDRs<br>B. Alternative treatments<br>1.AMPS<br>2.Nanoparticles<br>3.Antivirulence (QS inhibitors)<br>4.New Molecules<br>C. Drug Repurposing<br>1.Anticancerous<br>2.Antipsychotics<br>3.Antihelminthic<br>4.Anti inflammatory<br>5.Statins                                         |          |

| IV | Pharmacokinetics and Pharmacodynamics                             | 15 |
|----|-------------------------------------------------------------------|----|
|    | Pharmacokinetics:                                                 |    |
|    | A. Drug absorption: Drug dosages, from gastric emptying to        |    |
|    | gastric permeability to drug, first pass effect, bioavailability. |    |
|    | B. Drug distribution: Drug-plasma/ serum binding, blood           |    |
|    | brain barrier, accumulation in tissues.                           |    |
|    | C. Drug Metabolism:                                               |    |
|    | Phase I                                                           |    |
|    | Phase II                                                          |    |
|    | Phase III                                                         |    |
|    | D. Drug elimination : Drug excretion, Drug biotransformation,     |    |
|    | Pharmacodynamics:                                                 |    |
|    | A. Biochemical, physiological and molecular effects of drugs      |    |
|    | on the body.                                                      |    |
|    | B. Therapeutic Effect, Neutral and Adverse Drug Reactions         |    |

## **References:**

1. Agarwal S. S. and Paridhavi M. (2007) Herbal drug technology. Universities Press (India) Pvt. Ltd

2. Altreuter D. and Clark D. S. (1999) Combinatorial Biocatalysis: Taking the Lead From Nature. Curr. Opin. Biotechnol. 10: 130-136

3. Bentley's Textbook of Pharmaceutics, Ed. E. A. Rawlins, 8th Ed. (2002) Bailliere Tindall, London

4. Burn J. H. (1957) Principles of Therapeutics. Blackwell Scientific Pub. O. Ltd. Oxford.

5. Chatwal G. P. (2003) Bio-pharmaceutics and Pharmacokinetics. Himalaya Publishing House, Mumbai.

6. Committee for the Purpose of Control and Supervision on Experiments on Animals (CPCSEA). www.cpcsea.com

7. Dewick P. M. (2002). Medicinal natural products: A biosynthetic approach, 2nd Ed., John Wiley and Sons

8. Erhardt P. W. (2006) Medicinal Chemistry in the New Millennium: A Glance into the Future, Ed. Chorghade M. S. in Drug discovery and Development Volume I: Drug Discovery. Wiley-Interscience, John Wiley and Sons Inc. USA. 17-102.

9. Graly J. O. and Joubert P.H. (1997) Handbook of Phase I /II clinical drug trials, CRC Press

- Iyengar M. A. (1993) Pharmacology of Powdered Crude Drugs. Iyengar Series. Manipal, India
- 11. Micheles P. S., Khmelnitsley Y. L., Dordick J. S. and Clark D. S., (1998),
  Combinatorial Biocatalysis, A Natural Approach to Drug Discovery, Trends in Biotechnol. 16(5): 210-215

12. Satoskar R. S. and Bhandarkar S. D. (1991) Pharmacology and Pharmacotherapeutics, 12th Ed., Vol. 1 and 2. Popular Prakashan, Mumbai.

- 13. Vyas S. P and Dixit V. R. (2002), Pharmaceutical Biotechnology, CBS Publishers and Distributors, New Delhi
- Franklin T. J. and Snow G. A. (1975) Biochemistry of Antimicrobial Action. Chapman and Hall, London. 1-22 and 160-174
- 15.Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H. and Waring M. J. (1972) The molecular basis of antibiotic action. John Wiley and Sons. London
- 16.Goldstein A., Aronow L., and Kalman S. M. (1969) Principles of Drug Action. The Basis of Pharmacology. Harper international edition New York.

17. Lorian V. (1986) Antibiotics in laboratory medicine. 2nd Ed. Williams & Wilkins Publication

18. National Committee for Clinical Laboratory Standards (now Clinical and Laboratory Standards Institute, CLSI). NCCLS: 1997. Methods for dilution antimicrobial susceptibility testing for bacteria that grow aerobically. Approved Standards M7-A4. Villanova, PA:

19. National Committee for Clinical Laboratory Standards (now Clinical and Laboratory Standards Institute, CLSI). NCCLS: 2002.Performance standards for antimicrobial susceptibility testing; 12th information supplement (M100- S1). Villanova, PA.

20. Holliger M. A. (2008) Introduction to Pharmacology. 3rd Ed. CRC Press. Taylor and Francis.

21. Kokate C. K., Purohit A. P., Gokhale A. B. (2000) Pharmacology. 4th Ed. Nirali Prakashan.

22. Micheles P. S., Khmelnitsley Y. L., Dordick J. S. and Clark D. S. (1998) Combinatorial Biocatalysis. A Natural Approach to Drug Discovery. Trends in Biotechnol. 16(5): 210-21

23.https://www.news-medical.net/health/What-is-Drug-Absorption.aspx

24.https://en.wikipedia.org/wiki/Pharmacodynamics

25.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297296/

26.<u>https://www.pharmacologyeducation.org/clinical-pharmacology/adverse-drug-reactions</u>

27.<u>https://www.msdmanuals.com/en-in/professional/clinical-</u>

pharmacology/pharmacokinetics/drug-metabolism

28.https://www.msdmanuals.com/en-in/professional/clinical-

pharmacology/pharmacokinetics/drug-distribution-to-tissues



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Microbial Technology |
|---------------------|----------------------|
| Course Code         | 21SMMB242            |
| Semester            | IV                   |
| No. of Credits      | 4                    |

#### Aims & Objectives of the Course

| Sr. No. | Objectives                                                          |
|---------|---------------------------------------------------------------------|
| 1.      | To make students aware of microbial technology.                     |
| 2.      | To make them familiar with various techniques in fermentation.      |
| 3.      | To teach them applications of microorganisms in various industries. |

| Sr. No. | Learning Outcome                                                                             |  |  |
|---------|----------------------------------------------------------------------------------------------|--|--|
| 1.      | Students will learn about microbial technology and its applications                          |  |  |
| 2.      | Students will learn about various process control methods in fermentation.                   |  |  |
| 3.      | Students will be acquainted with the applications of microorganisms in different industries. |  |  |

# 21SMMB242 Microbial Technology

| Total: 4 Credits Workload: -15 h |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs /credit |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Credit No.                       | Credit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Workload   |
| Ι                                | Bioreactor Design and Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15         |
|                                  | <ul> <li>A. Designing of Bioreactors - Design aspects CSTRs:<br/>The dimensional ratios of the outer shell and the operational aspects such as working volume, baffles and impellers.</li> <li>B. The configuration (placement) of impellers in a vessel and the different types of impellers (types of turbines and propellers and their combinations)</li> <li>C. Immobilized cell reactors and air-lift reactors – Design and operation.</li> <li>D. Batch, Fed-batch and Continuous operation:<br/>Applications, advantages and limitations of each</li> </ul>                                                                                                                         |            |
|                                  | type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| II                               | Process Variables and Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15         |
|                                  | <ul> <li>A. Aeration: Theory of Oxygen transfer in bubble aeration, Oxygen transfer kinetics (OUR, OTR, Ccrit) Determination of KLa</li> <li>B. Agitation: Functions, Flow patterns and different types of impellers.</li> <li>C. Fermentation Broth Rheology and Power requirements for agitation, Concept of Newtonian and Non Newtonian fluids.</li> <li>D. Reynolds Number, Power Number, Aeration Number.</li> <li>Monitoring of process variables: <ul> <li>A. Use of various types of sensors and biosensors for monitoring environmental parameters (pressure, pH, temperature, DO and DCO2)</li> <li>B. Basic principles of operation, types of biosensors</li> </ul> </li> </ul> |            |

| III | Microbial Growth characteristics and product           | 15 |
|-----|--------------------------------------------------------|----|
|     | formation                                              |    |
|     | A. Control of primary (growth associated) and          |    |
|     | secondary (growth non-associated) metabolites.         |    |
|     | <b>B.</b> Kinetics of growth and product formation     |    |
|     | (growth rate, yield coefficient, efficiency)           |    |
|     | <b>C.</b> Effect of type of growth on fermentation:    |    |
|     | Different types of growth (mycelial form,              |    |
|     | free cell, cells producing exopolysaccharides)         |    |
|     | <b>D.</b> Effect of mass transfer of nutrients, oxygen |    |
|     | and heat on fermentation.                              |    |
| IV  | Applications of fungi in various fields.               | 15 |
|     | A. Agriculture and environmental applications.         |    |
|     | <b>B.</b> Food Industry                                |    |
|     | C. Biosensors                                          |    |
|     | <b>D.</b> Fuel cells.                                  |    |
|     | E. Use of Immobilized yeast cells.                     |    |

## **References:**

1.Bioreactor Design and Product Yield (1992), BIOTOL series, Butterworths Heinemann

2. Doran P. M. (1995) Bioprocess Engineering Principles. Imprint-Academic Press. Copyright-Elsevier.

3. Lydersen B. K., D'Elia N. A. and Nelson K. M. (Eds.) (1993) Bioprocess Engineering: Systems, Equipment and Facilities. JohnWiley and Sons Inc.

4. Maiti B. R. (2018) Principles of Bioreactor Design. Publisher: Viva books

5. McDuffie N. G.(1991) Bioreactor Design Fundamentals 1st Edition, Elsevier: eBook ISBN: 9781483221083

6. Ratledge C. and Kristiansen B. eds. (2001) Basic Biotechnology. 2nd Ed. Cambridge Univ. Press. Cambridge

7. Singh L., Mahapatra D. and Yousuf A. (2019). Bioreactors: Sustainable Design and Industrial Applications in mitigation of GHG emissions. Elsevier. ISBN0128212640, 9780128212646

8. Aiba S., Humphrey A. E. and Millis N. F. (1982). Biochemical Engineering. Second

Edition. Academic Press.

9. Angela Jozala (2017) Fermentation Processes Publisher-BoD. Books on Demand. ISBN-9535129279, E-Book 9789535129271 3. Carl-Fredrik Mandenius. (2016)

10. Bioreactors: Design, Operation and Novel Applications. Reprint. Publisher-John Wiley & Sons. ISBN 3527683372 E-Book- 9783527683376

11. Chand Subhash (1998): Fermentation Biotechnology: Industrial Perspectives. Industrial Perspectives: Proceedings of the Symposium on Biotech Industry - a Challenge fosr 2005 A.D. -with Special Reference to Fermentations. November 4-6, 1998. Publisher: All India Biotech Association

12. Larroche C., Sanroman M., Du G. and Pandey A. (Editors). (2016) Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls. Publisher-Elsevier, ISBN 0444636749, E-Book9780444636744

13. Lydersen B. K., D' Elia N. A. and Nelson K. M. (Eds.) (1993) Bioprocess Engineering: Systems, Equipment and Facilities. John Wiley and Sons Inc.

14. Operational Modes of Bioreactors (1992) BIOTOL series, Butter worths – Heinemann.

15. Stanbury P., Whitaker A. and Hall S. (2016) Principles of Fermentation Technology. 3rd Edition Imprint: Butterworth-Heinemann



# M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University

NAAC accredited 'A' Grade

| (CBCS – Autonomy 2 | 1Pattern) |
|--------------------|-----------|
|--------------------|-----------|

| Course/ Paper Title | 21SMMB243A                                 |
|---------------------|--------------------------------------------|
| Course Code         | Quality Assurance and Validation in        |
|                     | Pharmaceutical Industry and Development of |
|                     | Anti-infectives from plants                |
| Semester            | IV                                         |
| No. of Credits      | 2                                          |

# 21SMMB243A: Quality Assurance and Validation in Pharmaceutical Industry and Development of Antiinfectives from plants Choice based Optional Theory Paper (Elective)

# Total: 2 Credits Workload: -15 hrs /credit

## (Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

| Credit No. | Credit                                         | Workload |
|------------|------------------------------------------------|----------|
| Ι          | Quality Assurance and Validation in            | 15       |
|            | Pharmaceutical Industry                        |          |
|            | A. Good Manufacturing Practices (GMP) and      |          |
|            | Good Laboratory Practices (GLP) in the         |          |
|            | pharmaceutical industry.                       |          |
|            | B. Quality assurance and quality management in |          |
|            | pharmaceuticals ISO, WHO and US certification. |          |
|            | Safety in microbiology laboratory.             |          |
|            | C. Safety profile of drugs:                    |          |
|            | i. Sterility Testing                           |          |
|            | ii. Pyrogenicity testing                       |          |
|            | iii. Mutagenicity and Carcinogenicity testing  |          |

|    | iv. Teratogenicity testing                        |    |
|----|---------------------------------------------------|----|
| II | Development of Anti-infectives:                   | 15 |
|    | Therapeutic ratio, MIC and MBC Susceptibility     |    |
|    | Testing:                                          |    |
|    | A. Use of liquid and solid media                  |    |
|    | B. Factors affecting susceptibility testing, CLSI |    |
|    | guidelines                                        |    |
|    | C. Diffusion methods – agar dilution technique,   |    |
|    | gradient plate techniques, E-test, Kirby Bauer,   |    |
|    | Stokes method                                     |    |
|    | <b>D.</b> Susceptibility testing for:             |    |
|    | i. Anti-mycobacterial agents                      |    |
|    | ii. Anti-fungal agents                            |    |
|    | iii. Anti-protozoan agents                        |    |
|    | iv. Anti-viral agents                             |    |



#### M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

## (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title Practicals based on Quality Assurance and Validation in |                                                  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------|--|--|
|                                                                             | Pharmaceutical Industry and Development of Anti- |  |  |
|                                                                             | infectives from plants                           |  |  |
| Course Code                                                                 | 21SMMB245A                                       |  |  |
| Semester                                                                    | IV                                               |  |  |
| No. of Credits                                                              | 2                                                |  |  |

# Aims & Objectives of the Course

| Sr. No. | Objectives                                                          |
|---------|---------------------------------------------------------------------|
| 1.      | To make students aware of Quality Assurance in Pharmaceutical       |
|         | Industry.                                                           |
| 2.      | To inculcate the concepts of validation in Pharmaceutical Industry. |
| 3.      | To give students the knowledge of development of anti- infectives   |
|         | from plants                                                         |

| Sr. No. | Learning Outcome                                                                                 |  |  |
|---------|--------------------------------------------------------------------------------------------------|--|--|
| 1.      | Students will have knowledge of Quality Assurance in the Pharmaceutical Industry.                |  |  |
| 2.      | Students will understand Validation in the Pharmaceutical Industry.                              |  |  |
| 3.      | Students will be acquainted with the knowledge of development of<br>anti- infectives from plants |  |  |

# 21SMMB245A: Practicals based on Practicals based on quality assurance and validation in pharmaceutical industry and development of Anti- infectives from plants

#### **Choice based Optional Practical Paper (Elective)**

Total: 2 Credits Workload: -30 hrs /credit

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                   | Workload |
|------------|----------------------------------------------------------|----------|
| Ι          | Quality Assurance and Validation in                      | 15       |
|            | Pharmaceutical Industry                                  |          |
|            | Sterility testing of following pharmaceutical            |          |
|            | preparations as per IP:                                  |          |
|            | A. Oral preparations: Antipyretic or antibiotic          |          |
|            | tablets                                                  |          |
|            | B. Liquid preparations: Water soluble vitamin or         |          |
|            | cough syrup or ophthalmic drops                          |          |
|            | C. Bulk preparations: (any two) Surgical Cotton          |          |
|            | rolls/ gauze/ surgical sutures/ disposable syringes      |          |
| II         | <b>Development of Anti-infectives:</b>                   | 15       |
|            | Detection and isolation of anti- infectives from         |          |
|            | plant                                                    |          |
|            | A. Extraction of bioactive principles from plant and     |          |
|            | activity fractionation                                   |          |
|            | <b>B.</b> Estimation of its antimicrobial activity using |          |
|            | standard guidelines (CLSI)                               |          |



#### M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Societaibai Phylo Pune-

(Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21Pattern)

| Course/ Paper Title | Advances in Microbial Technology |
|---------------------|----------------------------------|
| Course Code         | 21SMMB243B                       |
| Semester            | IV                               |
| No. of Credits      | 2                                |

# Aims & Objectives of the Course

| Sr. No. | Objectives                                                                             |
|---------|----------------------------------------------------------------------------------------|
| 1.      | To make students aware about Advances in Microbial Technology                          |
| 2.      | To make them familiar with various techniques used for animal cell culture technology. |
| 3.      | To teach them applications of animal cell culture technology.                          |

| Sr. No. | Learning Outcome                                                               |
|---------|--------------------------------------------------------------------------------|
| 1.      | Students will learn about Advances in Microbial Technology                     |
| 2.      | Students will learn about applications of animal cell culture technology       |
| 3.      | Students will be acquainted with the latest techniques and their applications. |

#### 21SMMB243B: Advances in Microbial Technology

## Choice based Optional Theory Paper (Elective) Total: 2 Credits Workload: -15 hrs /credit (Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

| Credit No. | Credit                                                    | Workload |
|------------|-----------------------------------------------------------|----------|
| Ι          | Polysaccharides:                                          | 15       |
|            | A. Introduction and Nature of Polysaccharides.            |          |
|            | <b>B.</b> Mechanism of synthesis                          |          |
|            | a) Bacterial polysaccharides                              |          |
|            | b) Fungal polysaccharides                                 |          |
|            | c) Yeast polysaccharides                                  |          |
|            | Commercially produced polysaccharides                     |          |
| II         | Animal cell culture technology to produce                 | 15       |
|            | A. Recombinant forms of natural proteins (Insulin,        |          |
|            | erythropoietin),                                          |          |
|            | <b>B.</b> Recombinant vaccines (protein: HIV, hepatitis B |          |
|            | and DNA: HIV, malaria)                                    |          |
|            | C. Nucleic acid-based products (introduction to           |          |
|            | gene therapy).                                            |          |



M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title Practicals based on Advances in Microbial |            |  |  |
|---------------------------------------------------------------|------------|--|--|
|                                                               | Technology |  |  |
| Course Code                                                   | 21SMMB245B |  |  |
| Semester                                                      | IV         |  |  |
| No. of Credits                                                | 2          |  |  |

#### Aims & Objectives of the Course

| Sr. No. | Objectives                                                                             |
|---------|----------------------------------------------------------------------------------------|
| 1.      | To make students aware about Advances in Microbial Technology                          |
| 2.      | To make them familiar with various techniques used for animal cell culture technology. |
| 3.      | To teach them applications of animal cell culture technology.                          |

| Sr. No. | Learning Outcome                                                               |
|---------|--------------------------------------------------------------------------------|
| 1.      | Students will learn about Advances in Microbial Technology                     |
| 2.      | Students will learn about applications of animal cell culture technology.      |
| 3.      | Students will be acquainted with the latest techniques and their applications. |

# 21SMMB245B: Practicals based on Advances in Microbial Technology Choice based Optional Practical Paper (Elective) Total: 2 Credits

#### Workload: -30 hrs/credit

| (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester | ) |
|------------------------------------------------------------|---|
|------------------------------------------------------------|---|

| Credit No. | Credit                                                                                                                                                      | Workload |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ι          | Polysaccharides                                                                                                                                             | 15       |
|            | Laboratory scale production and media optimization for: exopolysaccharide / bioemulsifier production                                                        |          |
| II         | Animal cell culture technology to produce                                                                                                                   | 15       |
|            | <ul> <li>A. Preparation of Hybridoma from tumour cell lines.</li> <li>B. Production of monoclonal antibodies from hybridoma of tumour cell lines</li> </ul> |          |

#### **References:**

1.Biswas J. and Paul A. K. (2017). Optimization of factors influencing exopolysaccharide production by Halomonas xianhensis SUR308 under batch culture. AIMS Microbiology, 3(3), 564–579.

2. Hereher F., El-fallal A. and Abou-Dobara M. (2018). Cultural optimization of a new exopolysaccharide producer "Micrococcus roseus". Beni-Suef University Journal of Basic and Applied Sciences. 7(4): 632-639

3. Maia P., Santos V., Ferreira A., Luna M., Silva T., Andrade R. and Campos T. G. (2018). An efficient bioemulsifier-producing Bacillus subtilis UCP 0146 isolated from mangrove sediments. Colloids and Interfaces. 2. 58. 10.3390/colloids2040058

4. Rosero Neira-Gladys; Pimienta Astrid-Lorely.; Dugarte F. and Carvajal Fredy-Gonzalo. (2003) Parameters examination of a biosurfactant production at laboratory scale. C.T.F Cienc. Tecnol. Futuro [online]. 2(4): 35-42

5. Pandey S. (2010) Hybridoma technology for production of monoclonal antibodies. Pharmaceutical Sciences Review and Research. 1(2): Article 017. 88-94

6.Carvalho L. S., da Silva O. B., de Almeida G. C., de Oliveira J.D., Parachin N. S. and Carmo T. S. (2017). Production Processes for Monoclonal Antibodies. Fermentation Processes, Angela Faustino Jozala. Intech Open. Chapter 10.181-198

MSc Microbiology

7.Kavyasudha C., Joel J. P. and Devi A. (2018) Differential expression of nucleostemin in the cytoplasm and nuclei of normal and cancerous cell lines. Turk J Biol. 42: 250-258
8. Greenfield E. A. (2014) Generating Monoclonal Antibodies. Chapter 7. Antibodies: A laboratory Manual. 2nd edition. Cold Spring Harbour Laboratory Press. New York.629-644



#### M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

#### (CBCS – Autonomy 21Pattern)

| Course/     | Paper | Industrial | Waste   | Water | Treatment | and | Industrial |
|-------------|-------|------------|---------|-------|-----------|-----|------------|
| Title       |       | Production | of Vacc | ines  |           |     |            |
| Course Coo  | le    | 21SMMB2    | 243C    |       |           |     |            |
| Semester    |       | IV         |         |       |           |     |            |
| No. of Cred | lits  | 2          |         |       |           |     |            |

## Aims & Objectives of the Course

| Sr. No. | Objectives                                                                 |
|---------|----------------------------------------------------------------------------|
| 1.      | To make students study the concepts of Industrial Waste Water<br>Treatment |
| 2.      | To make them understand about sludge treatment                             |
| 3.      | To make students learn about the Industrial Production of Vaccines         |

| Sr. No. | Learning Outcome                                                   |
|---------|--------------------------------------------------------------------|
| 1.      | Students understand the concepts of Industrial Waste Water         |
|         | Treatment                                                          |
| 2.      | Students learn about sludge treatment                              |
| 3.      | Students get acquainted with the concepts of Industrial Production |
|         | of Vaccines                                                        |

# 21SMMB243C Industrial Waste Water Treatment and Industrial Production of Vaccines

# **Choice based Optional Theory Paper (Elective)**

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

| Credit<br>No. | Credit                                                             | Workload |
|---------------|--------------------------------------------------------------------|----------|
| Ι             | Concept and Introduction                                           | 15       |
|               | <b>A.</b> Primary, Secondary and Tertiary treatment of Wastewater. |          |
|               | Aerobic and Anaerobic, Suspended and Attached growth processes.    |          |
|               | <b>B.</b> Activated Sludge treatment and analysis (reactions and   |          |
|               | Kinetics, mass balance analysis, Hydraulic characters)             |          |
|               | C. Critical Operating parameters like DO, Hydraulic                |          |
|               | retention time, Mean cell retention time, F/M ratio.               |          |
|               | <b>D.</b> Advanced treatments: SAFF, MBR , MBBR, RBC.              |          |
| II            | Current industrial wastewater treatment processes                  |          |
|               | A. Composition, physico-chemical properties and various            |          |
|               | effluents treatment methods with reference to:                     |          |
|               | a. Dairies                                                         |          |
|               | b. Food processing                                                 |          |
|               | c. Dyeing industry / Dye-house effluents                           |          |
|               | d. Paper and pulp industry                                         |          |
|               | e.Pharmaceutical Industries                                        |          |
|               | B.Sludge treatment and disposal                                    |          |



# M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21 Pattern)

| Course/ Paper  | Practicals based on Industrial Waste Water Treatment and |
|----------------|----------------------------------------------------------|
| Title          | Industrial Production of Vaccines                        |
| Course Code    | 21SMMB245C                                               |
| Semester       | IV                                                       |
| No. of Credits | 2                                                        |

#### Aims & Objectives of the Course

| Sr. | Objectives                                                         |  |  |
|-----|--------------------------------------------------------------------|--|--|
| No. |                                                                    |  |  |
| 1.  | To make students study the concepts of Industrial Waste Water      |  |  |
|     | Treatment                                                          |  |  |
| 2.  | To make them understand about sludge treatment                     |  |  |
| 3.  | To make students learn about the Industrial Production of Vaccines |  |  |

| Sr. | Learning Outcome                                                     |  |  |
|-----|----------------------------------------------------------------------|--|--|
| No. |                                                                      |  |  |
| 1.  | Students understand the concepts of Industrial Waste Water Treatment |  |  |
| 2.  | Students learn about sludge treatment                                |  |  |
| 3.  | Students get acquainted with the concepts of Industrial Production   |  |  |
|     | of Vaccines                                                          |  |  |

# 21SMMB245C: Practicals based on Industrial Waste Water Treatment and Industrial Production of Vaccines Choice based Optional Practical Paper (Elective) Total: 2 Credits Workload: -30 hrs/credit

#### (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                          | Workload |
|------------|-----------------------------------------------------------------|----------|
| Ι          | Concept and Introduction                                        | 15       |
|            | i. Estimation of pollution load of a natural sample (e.g. river |          |
|            | water / industrial waste water)                                 |          |
|            | ii. Setting up a laboratory experiment to assess degradability  |          |
|            | of synthetic wastewater.                                        |          |
| II         | Current industrial wastewater treatment processes               | 15       |
|            | Analysis of physicochemical and microbial parameters of         |          |
|            | dairy industry                                                  |          |
|            | 1.pH                                                            |          |
|            | 2. Temperature                                                  |          |
|            | 3. BOD                                                          |          |
|            | 4. COD                                                          |          |
|            | 5.TS,TDS TSS                                                    |          |

#### **References:**

1.Barthwal R. R. (2002) Environmental Impact Assessment, New Delhi (India). New Age International (P) Limited Publishers.

2. Eaton A. D. (2005) Standard methods for the examination of water and wastewater. American Public Health Association. American Water Works Association. Water Environment Federation. Publisher: Washington, D.C.: APHA-AWWA-WEF. National government publication : English : 21st edition

3. Glasson J., Therivel R. and Chadwick A. (2012) Rutledge-Taylor and Francis Introduction to Environmental Impact Assessment. 4th Edition. 416 pages

4. Srivastava A.K. (2003) Environment Impact Assessment, (A.P.H. Publishing. Corporation, Delhi, ISBN-817648-4423,

5. Cruickshank R. (1982) Medical Microbiology, 12th Edition, P.403.

- 6.. Felix A. (1942) Brit. Med. J. 11: 597.
- 7. Roitt L. (1994) Essential Immunology. 8th edition. Blackwell Scientific. Oxford, UK.114-115.

8. Vaerman J.P. (1981) Single radial immunodiffusion, in methods in enzymology. 73 (Langone,

J. J. And Van Vunakis, H, Eds.) New York. 291-305.



M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# (CBCS – Autonomy 21 Pattern)

| Course/ Paper Title | Bioethics, Biosafety, Quality Control and |
|---------------------|-------------------------------------------|
|                     | Quality Assurance                         |
| Course Code         | 21SMMB243D                                |
| Semester            | IV                                        |
| No. of Credits      | 2                                         |

#### Aims & Objectives of the Course

| Sr. | Objectives                                                             |
|-----|------------------------------------------------------------------------|
| No. |                                                                        |
| 1.  | To make students study the concepts of Quality Assurance reviewing and |
|     | approval of procedures, reviewing records and performing audits        |
| 2.  | To make them understand about ethical conflicts in microbiological and |
|     | biotechnological research                                              |
| 3.  | To learn about Biosafety Regulatory bodies (Role and functions)        |

| Sr.<br>No. | Learning Outcome                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------|
|            | Students will learn about Quality Assurance reviewing and approval of procedures, reviewing records and performing audits |
|            | Students will learn about Ethical conflicts in microbiological and biotechnological research                              |
|            | Students will be acquainted with Biosafety Regulatory bodies (Role and functions)                                         |

| Credit<br>No. | Credit                                                                                                                | Workload |
|---------------|-----------------------------------------------------------------------------------------------------------------------|----------|
| Ι             | Bioethics and Biosafety                                                                                               | 15       |
|               | A. Bioethics                                                                                                          |          |
|               | i. Concept of ethics and bioethics with respect to microbiological research                                           |          |
|               | ii. Principles of bioethics.                                                                                          |          |
|               | iii. Ethical conflicts in microbiological and biotechnological research                                               |          |
|               | iv. Biological Diversity Act: conservation of biological diversity,                                                   |          |
|               | sustainable use of its components and fair and equitable sharing                                                      |          |
|               | of the benefits arising out of utilization of genetic resources                                                       |          |
|               | <b>B.</b> Biosafety Regulatory bodies (Role and functions)                                                            |          |
|               | i. Advisory Committee: Recombinant DNA Advisory<br>Committee (RDAC)                                                   |          |
|               | ii. Regulatory / Approval Committees:                                                                                 |          |
|               | a. Genetic Engineering Appraisal Committee (GEAC)                                                                     |          |
|               | <ul><li>b. Review Committee on Genetic Manipulation (RCGM)</li><li>c. SIRO (DSIR)</li></ul>                           |          |
|               | d. Institutional Biosafety Committee (IBSC): Importance of                                                            |          |
|               | Biosafety Institutional Biosafety Committees (IBSCs) Laboratory                                                       |          |
|               | associated infections and hazards Bio safety regulation: handling                                                     |          |
|               | of recombinant DNA products and process in industry and in                                                            |          |
|               | institutions                                                                                                          |          |
|               | iii. Monitoring Committees:                                                                                           |          |
|               | a. State Biotechnology Coordination Committee (SBCC)                                                                  |          |
|               | b. District Level Committee (DLC)                                                                                     |          |
| II            | Quality Control and Quality Assurance                                                                                 |          |
|               | Quality Control:                                                                                                      |          |
|               | A. Assessment of suitability of components and products<br>Evaluation of the performance of the manufacturing process |          |

| <b>B.</b> Quality Assurance reviewing and approval of procedures, |
|-------------------------------------------------------------------|
| reviewing records and performing audits                           |
| C. Good Manufacturing Practices (GMP) and Good                    |
| Laboratory Practices (GLP)                                        |
| <b>D.</b> Regulatory bodies (Role and functions):                 |
| i. The Central Drugs Standard Control Organization                |
| (CDSCO)                                                           |
| ii. National Accreditation Board for Testing and Calibration      |
| Laboratories (NABL)                                               |
| iii. Food Safety and Standards Authority of India (FSSAI):        |
| Food and water Laboratories                                       |
| iv. International Standard ISO/IEC 17025:2017(E).                 |
| v. Bureau of Indian Standards -IS 14648 (2011): Methods of        |
| Test for Microbiological Examination of Industrial Product        |
| (examples Cosmetics And Cosmetic Raw Materials)                   |
| vi. The Central Pollution Control Board (CPCB)- Prevention        |
| and control of water and air pollution and improvement of the     |
| quality of air.                                                   |

#### **References:**

1. Biotechnology: A comprehensive treatise (Vol. 12). Legal economic and ethical dimensions VCH. (2nded) ISBN- 10 3527304320.

2. Encyclopedia of Bioethics 5 vol set, (2003) ISBN10: 0028657748. 2. Thomas, J.A., Fuch, R.L. (2002). Biotechnology and safety Assessment (3rd Ed) Academic press.

3. Notification from Department of Biotechnology, Ministry of Science and Technology, India. (2020) Revised simplified procedures/guidelines on Import, Export and Exchange of GE organisms and product thereof for R& D purpose. File no. BT/BS/17/635/2015-PID. dated-17/01/2020

4. Ministry of Law and Justice (Legislative Department) New Delhi, the 5th February, 2003/Magha 16, 1924 (Saka) published for general information: The Biological Diversity Act, 2002 No. 18 of 2003 [5th February, 2003] b. District Level Committee (DLC)

5. Draft Manual on method of microbiological testing (2016) microbiology of foods. Food safety and Food Standards.

MSc Microbiology

Available as https://old.fssai.gov.in/Portals/0/Pdf/Microbiological\_Testing\_Fo

ods\_Draft\_Manual\_06\_09\_2016.pdf

6. Eleftheriadou M. and Tsimillis K. C. (Eds), Eurachem guide: Accreditation for Microbiological Laboratories, Second edition (2013), ISBN: 978-91-87017-92-6.

Available from www.eurachem.org.

7.International Standard ISO/IEC 17025:2017(E). General requirements for the competence of testing and calibration Laboratories. Third edition. 2017-11

8. IS 14648 (2011): Methods of Test for Microbiological Examination of Cosmetics And Cosmetic Raw Materials. Available at: <u>https://law.resource.org/pub/in/bis/S11/is.14648.2011.pdf</u>

9. Manual for Good Food Laboratory Practices (GFLPs). 2018. Food Safety and Standards Authority of India (FSSAI), Ministry Of Health and Family Welfare Government Of India, New Delhi

10. Manual of Methods for Analysis of Water 2016. Food Safety and Standards Authority of India (FSSAI), Ministry Of Health and Family Welfare Government of India, New Delhi

11. National Accreditation Board for Testing and Calibration Laboratories (NABL). (2019)Specific Criteria for Accreditation. NABL 112. Issue No: 04. Issue Date -11-Feb-2019 12.https://ibkp.dbtindia.gov.in/

13.http://www.electropedia.org/

14.<u>https://cdsco.gov.in/opencms/opencms/en/About-us/Functions/</u>

15. https://cdsco.gov.in/opencms/opencms/en/Home/

16. https://cpcb.nic.in/functions/

17. <u>https://www.iso.org/obp</u>

MSc Microbiology



#### M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

# 21SMMB245D: Practicals based on Bioethics, Biosafety, Quality Control and

#### **Quality Assurance**

#### Choice based Optional Practical Paper (Elective) Total: 2 Credits Workload: -30 hrs/credit

## (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

| Credit No. | Credit                                                                              | Workload |
|------------|-------------------------------------------------------------------------------------|----------|
| I.         | NABL norms for Calibration of:                                                      | 15       |
|            | i. Autoclave- Calibration of pressure gauge and temperature                         |          |
|            | by thermal mapping, sterility testing, SOP preparation.                             |          |
|            | ii. Laminar Air Flow- checking the functioning of UV light                          |          |
|            | by colony count method and sterility checking by blood agar                         |          |
|            | media plate method, SOP preparation                                                 |          |
|            | Food Safety and Standards Authority of India (FSSAI)                                |          |
|            | Regulations Test Methods for Drinking Water                                         |          |
|            | i. Detection of sulphite-reducing anaerobes (Clostridia)                            |          |
|            | ii. Detection of viruses                                                            |          |
| II.        | Food Safety and Standards Authority of India (FSSAI)                                | 15       |
|            | <b>Regulations Test Methods for Water/butter/cheese/milk</b>                        |          |
|            | product for Processed Food Industry: (perform any two)                              |          |
|            | i. Proteolytic Plate Count                                                          |          |
|            | ii. Lipolytic Plate Count<br>iii. Thermophilic Bacterial Count (for Dairy Industry- |          |
|            | Processing)                                                                         |          |
|            | iv. Slime Forming Bacteria (for Dairy industry-Hot water                            |          |
|            | Food Safety and Standards Authority of India                                        |          |
|            | (FSSAI)Regulations for Microbiological Testing of food:                             |          |
|            | i. Detection and Confirmation of Listeria monocytogenes in                          |          |
|            | Foods                                                                               |          |
|            | ii. Fermentation Test (Incubation test for Cans, Tetrapacks,                        |          |
|            | Standy pouches).                                                                    |          |

## **References:**

1. National Accreditation Board for Testing and Calibration Laboratories (NABL). (2019)Specific Criteria for Accreditation. NABL 112. Issue No: 04 Issue Date:11-Feb-2019

2. Manual of Methods for Analysis of Water 2016. Food Safety and Standards Authority of India (FSSAI), Ministry Of Health and Family Welfare Government of India, New Delhi

3. Manual of Methods for Analysis of Water 2016. Food Safety and Standards Authority of India (FSSAI), Ministry Of Health and Family Welfare Government of India, New Delhi

4.Draft manual on method of microbiological testing (2016) microbiology of foods. Food safety and Food Standards.

Available at:https://old.fssai.gov.in/Portals/0/Pdf/Microbiological\_Testing\_Foods\_Draf t\_Manual\_06\_09\_2016.pdf

5. https://archive.fssai.gov.in/home/food -testing/food -testing -manual.html.

6. Manual for Good Food Laboratory Practices (GFLPs). 2018. Food Safety and Standards Authority of India (FSSAI), Ministry Of Health and Family Welfare Government of India, New Delhi

# 21SMMB244: Dissertation

## **Guidelines for MBCP-4 Semester IV: Dissertation**

1. A dissertation can be carried out by a single student or by a group of students where the group should not contain more than two students.

2. The dissertation report will be prepared as per the thesis format.

3. Submission of the dissertation report will be at least ten days before the date of examination.

4. One copy of the report will be preserved in the department, in college.

5. If there are more than one student carrying out a single dissertation, a single report can be submitted to the department and these students will be assessed based on a single oral presentation.

6. In such a case, the presentation should be carried out by all the students carrying out the same work; dividing the presentation equally among them.

7. At the time of presentation, the external and internal examiners will be present; the dissertation guide may or may not be present.

8. Presentation should be carried out to in the presence an audience composed of examiners, departmental teaching staff and the postgraduate students of the department (M.Sc. I and II).

9. Oral presentation can be carried out using posters, blackboard, transparencies, model or LCD projector.

10. The allotted time for each oral presentation (one project) should be 10 to 12 minutes, followed by a question and answer session of 5 to 8 minutes. The audience can participate in this session.

11. The assessment of the dissertation is for a total of 100 marks (IA-50 and EA-50) out of which end semester will be for 50 marks and the in semester assessment will be for 50 marks.

12. The assessment of the first 50 marks (in semester) will be carried out by the guide(s) who has supervised the work of the candidate(s) throughout the semester. The assessment will be carried out on the basis of the points, as per the accompanied format of the mark sheet. Head of the department should communicate this point wise assessment system to the dissertation supervisor, well in advance. Guide(s) will give appropriate marks, point-wise and submit it in a sealed envelope(s) to the Head of the respective department, three days prior to examination and project presentation. On the day of examination, the Head of the department will hand over these unopened envelopes to the examiners.

13. Assessment of remaining 50 marks (end semester examination for both courses) will be carried out for individual students at the time of examination jointly by Internal and External

examiners by the means of oral presentation. The assessment will be carried out on the basis of the points as per the accompanied format of the mark sheet.

14. Students should be made aware of the assessment parameters, on which they will be assessed throughout the semester and at the end of the fourth semester.

15. The external and internal examiners by mutual agreement will appropriately settle the marks given by the guide (reconsider, if necessary) and marks of oral presentation, and submit the mark lists to the Coordinator of the M. Sc. Examination Panel for that examination.

## Practical Examination in M. Sc. Microbiology

#### Month

**Course MBCP-4 (Dissertation)** 

Year

Name of the Center: Name of the Student: Exam No.:

**Point-wise mark sheet** – to be filled in by the Guide (Based on the evaluation carried out throughout the period of dissertation)

| Sr.<br>No. | Points for Evaluation                                                                                    | Max. Marks | Evaluation |
|------------|----------------------------------------------------------------------------------------------------------|------------|------------|
| 1.         | Intellectual potential – Understanding of the research problem by the student (topic selection)          | 8          |            |
| 2.         | Research aptitude –                                                                                      |            |            |
|            | a) Depth of literature survey for the proposed work.                                                     | 5          |            |
|            | b) Inputs of student in development of plans and protocols for the experimentation (methodology)         | 8          |            |
|            | c) Ability to analyze data and formulate a solution (statistical analysis)                               | 8          |            |
|            | d) Analytical and reasoning abilities of the student<br>for interpretation of data, inputs in discussion | 8          |            |
| 3.         | Motivation – punctuality, meeting dead-lines and seriousness (attendance)                                | 4          |            |
| 4.         | Ability to work with others                                                                              | 4          |            |
| 5.         | Communication skill – oral and written<br>(conferences, oral, ppt., publication)                         | 5          |            |
|            | Total                                                                                                    | 50         |            |

Place of work : Name of the Guide: Date and Signature :

## Practical Examination in M. Sc. Microbiology

#### Month

Year

#### **Course MBCP-4 (Dissertation)**

## Name of the Center: Name of the Student:

Exam No.:

| Sr.<br>No. | Points for Evaluation                                                                                                                                                  | Max.<br>Marks | Evaluation |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|
| 1.         | Proficiency of presentation skills – use of audio-<br>visual aids, preparation of graphs, charts, models,<br>statistical analysis etc., use of scientific language     | 7             |            |
| 2.         | Research potential of the work, results and<br>interpretation, outcome of the study and possible<br>future plans, publication potential of the work<br>towards society | 7             |            |
| 3.         | The dissertation report preparation (scientific writing) and its contents                                                                                              | 4             |            |
| 4.         | Abilities of satisfactory responses to the queries from<br>the audience (defense)                                                                                      | 7             |            |
|            | Total                                                                                                                                                                  | 25            |            |

Point wise mark sheet – to be filled in by External examiner (Based on oral presentation and viva voce of the dissertation as end semester evaluation)

Place of work:

Name of the External Examiner:

Signature:

:

Date

## Practical Examination in M. Sc. Microbiology

Month

**Course MBCP-4 (Dissertation)** 

Year

# Name of the Center: Name of the Student: Exam No.:

Point wise mark sheet – to be filled in by Internal Examiner (Based on oral presentation and viva voce of the dissertation as end semester evaluation)

| Sr.<br>No. | Points for Evaluation                                                                                                                                             | Max. Marks | Evaluation |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 1.         | Proficiency of presentation skills – use of audio-visual<br>aids, preparation of graphs, charts, models, statistical<br>analysis etc., use of scientific language | 7          |            |
| 2.         | Research potential of the work, results and interpretation, outcome of the study and possible future plans, publication potential of the work towards society     | 7          |            |
| 3.         | The dissertation report preparation (scientific writing) and its contents                                                                                         | 4          |            |
| 4.         | Abilities of satisfactory responses to the queries from<br>the audience (defense)                                                                                 | 7          |            |
|            | Total                                                                                                                                                             | 25         |            |

Place of work: Name of the Internal Examiner: Signature: Date: